找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Geometry and Number Theory; In Honor of Vladimir Victor Ginzburg Book 2006 Birkhäuser Boston 2006 Kac–Moody.Prime.algebra.algebra

[复制链接]
查看: 39510|回复: 47
发表于 2025-3-21 17:05:33 | 显示全部楼层 |阅读模式
期刊全称Algebraic Geometry and Number Theory
期刊简称In Honor of Vladimir
影响因子2023Victor Ginzburg
视频video
发行地址A collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to V. Drinfeld.Original research articles reflect the range of Drinfeld‘s work.
学科分类Progress in Mathematics
图书封面Titlebook: Algebraic Geometry and Number Theory; In Honor of Vladimir Victor Ginzburg Book 2006 Birkhäuser Boston 2006 Kac–Moody.Prime.algebra.algebra
影响因子.One of the most creative mathematicians of our times, Vladimir Drinfeld received the Fields Medal in 1990 for his groundbreaking contributions to the Langlands program and to the theory of quantum groups...These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld‘s own interests in algebra, algebraic geometry, and number theory..
Pindex Book 2006
The information of publication is updating

书目名称Algebraic Geometry and Number Theory影响因子(影响力)




书目名称Algebraic Geometry and Number Theory影响因子(影响力)学科排名




书目名称Algebraic Geometry and Number Theory网络公开度




书目名称Algebraic Geometry and Number Theory网络公开度学科排名




书目名称Algebraic Geometry and Number Theory被引频次




书目名称Algebraic Geometry and Number Theory被引频次学科排名




书目名称Algebraic Geometry and Number Theory年度引用




书目名称Algebraic Geometry and Number Theory年度引用学科排名




书目名称Algebraic Geometry and Number Theory读者反馈




书目名称Algebraic Geometry and Number Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:06:45 | 显示全部楼层
Progress in Mathematicshttp://image.papertrans.cn/a/image/152614.jpg
发表于 2025-3-22 02:26:56 | 显示全部楼层
Solutions for the Equation of Motion,We prove that natural generating functions for enumeration of branched coverings of the pillowcase orbifold are level 2 quasimodular forms. This gives a way to compute the volumes of the strata of the moduli space of quadratic differentials.
发表于 2025-3-22 06:26:31 | 显示全部楼层
发表于 2025-3-22 10:49:45 | 显示全部楼层
Superselection Rules and Symmetries,The main goal of this paper is to study properties of the iterated integrals of modular forms in the upper half-plane, possibly multiplied by . ., along geodesics connecting two cusps. This setting generalizes simultaneously the theory of modular symbols and that of multiple zeta values.
发表于 2025-3-22 13:35:54 | 显示全部楼层
发表于 2025-3-22 20:41:30 | 显示全部楼层
Pillowcases and quasimodular forms,We prove that natural generating functions for enumeration of branched coverings of the pillowcase orbifold are level 2 quasimodular forms. This gives a way to compute the volumes of the strata of the moduli space of quadratic differentials.
发表于 2025-3-23 00:52:24 | 显示全部楼层
Integrable linear equations and the Riemann-Schottky problem,We prove that an indecomposable principally polarized abelian variety . is the Jacobain of a curve if and only if there exist vectors . ≠ 0, . such that the roots ..(.) of the theta-functional equation .(. + . + .) = 0 satisfy the equations of motion of the ..
发表于 2025-3-23 05:18:38 | 显示全部楼层
Iterated integrals of modular forms and noncommutative modular symbols,The main goal of this paper is to study properties of the iterated integrals of modular forms in the upper half-plane, possibly multiplied by . ., along geodesics connecting two cusps. This setting generalizes simultaneously the theory of modular symbols and that of multiple zeta values.
发表于 2025-3-23 07:29:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 21:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表