找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Geometry; An Introduction Daniel Perrin Textbook 2008 Springer-Verlag London 2008 Algebra.Arithmetic.Riemann-Roch theorem.algebra

[复制链接]
楼主: 新石器时代
发表于 2025-3-26 22:15:23 | 显示全部楼层
Projective algebraic sets,n intersections always contain a certain number of special cases due to parallel lines or asymptotes. For example, in the plane two distinct lines meet at a unique point except when they are parallel. In projective space, there are no such exceptions.
发表于 2025-3-27 04:19:28 | 显示全部楼层
Sheaves and varieties,he role played by homogeneous polynomials and graded rings in projective geometry. The most important difference, however, is the functions. If . is an affine algebraic set, we have a lovely function algebra .(.) and an almost perfect dictionary translating properties of . into properties of .(.). O
发表于 2025-3-27 08:34:09 | 显示全部楼层
Dimension,(curves) and 2 (surfaces)… We will give a very natural topological definition of dimension, which is not always easy to work with, followed by other definitions which are easier to work with but which depend on results from algebra.
发表于 2025-3-27 13:25:39 | 显示全部楼层
发表于 2025-3-27 16:27:03 | 显示全部楼层
发表于 2025-3-27 18:42:08 | 显示全部楼层
发表于 2025-3-27 23:42:33 | 显示全部楼层
C. Loebbecke,P. Powell,P. Finnegan,W. Goldenne of the problems of projective geometry is that elements of .(.) do not define functions on ., even in the simplest case, namely a homogeneous polynomial, since if . ∈ . and . is homogeneous of degree ., then the quantity .(.) depends on the choice of representative: .(λ.) = λ.(.).
发表于 2025-3-28 05:05:47 | 显示全部楼层
发表于 2025-3-28 08:35:31 | 显示全部楼层
Sheaves and varieties,ne of the problems of projective geometry is that elements of .(.) do not define functions on ., even in the simplest case, namely a homogeneous polynomial, since if . ∈ . and . is homogeneous of degree ., then the quantity .(.) depends on the choice of representative: .(λ.) = λ.(.).
发表于 2025-3-28 12:26:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 10:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表