找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebra and Operator Theory; Proceedings of the C Yusupdjan Khakimdjanov,Michel Goze,Shavkat A. Ayup Conference proceedings 1998 Springer S

[复制链接]
楼主: ossicles
发表于 2025-3-26 21:36:37 | 显示全部楼层
https://doi.org/10.1007/978-94-010-1401-4 .. degrees of which are integrable . ∈ [1, ∞). P.Arens had introduced and studied the set.It was demonstrated, in particular, that ..(.) .s a metrizable locally convex ⋆ - algebra with respect to the topology . generated by the system of norms.The additional study of the Arens algebras L.(.) was ma
发表于 2025-3-27 02:09:32 | 显示全部楼层
发表于 2025-3-27 08:33:57 | 显示全部楼层
发表于 2025-3-27 10:01:18 | 显示全部楼层
发表于 2025-3-27 14:43:43 | 显示全部楼层
978-94-010-6130-8Springer Science+Business Media Dordrecht 1998
发表于 2025-3-27 20:00:29 | 显示全部楼层
A Moduli Problem Related to Complex Supermanifolds,s solved in the case of the split supermanifold (., Ω), where . is a simply connected irreducible compact Hermitian symmetric space and Ω the sheaf of holomorphic forms on .. We also give a construction of a family of non-split supermanifolds with retract (., Ω) for a general complex manifold . This
发表于 2025-3-28 00:06:09 | 显示全部楼层
,Comparaison de L’Homologie de Hochschild et de L’Homologie de Poisson Pour Une Deformation des Surfructure. Let .. (ℂ) be the first Weyl algebra ℂ[., .] with the relation .-.=1, on which . acts by automorphisms in such a way that the invariant algebra .. (ℂ). is a deformation of ... We prove that the trace group ..(..(ℂ).) is a deformation of the Poisson homology group ..(..(ℂ).). Moreover, these
发表于 2025-3-28 04:41:00 | 显示全部楼层
Algebres de Lie Rigides,ébrique de .est définie comme suit: soient .et (.., .., …, ..) une base fixée de ... Les constantes de structure de . relatives à la base (..) vérifient: . et ., paramétrisée par les C.vérifiant les conditions polynômiales (1), est une variété algébrique plongée dans .. Toutes les notions topologiqu
发表于 2025-3-28 09:41:10 | 显示全部楼层
发表于 2025-3-28 12:23:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 14:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表