找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebra and Coalgebra in Computer Science; 4th International Co Andrea Corradini,Bartek Klin,Corina Cîrstea Conference proceedings 2011 Spr

[复制链接]
楼主: 清楚明确
发表于 2025-3-23 13:42:18 | 显示全部楼层
A Counterexample to Tensorability of Effectsoutput, or continuations. One of their advantages is that they allow for a modular treatment of effects, using composition operators such as sum and tensor. Here, the sum represents the non-interacting combination of effects, while the tensor imposes a high degree of interaction in the shape of a co
发表于 2025-3-23 16:25:26 | 显示全部楼层
The Microcosm Principle and Compositionality of GSOS-Based Component Calculiof behaviors—yielding a behavior, where behaviors are identified with states of the final coalgebra—were observed to form an instance of the .. The microcosm principle, a term by Baez and Dolan, refers to the general phenomenon of nested algebraic structures such as a monoid in a monoidal category.
发表于 2025-3-23 20:42:25 | 显示全部楼层
发表于 2025-3-23 22:52:36 | 显示全部楼层
发表于 2025-3-24 06:07:05 | 显示全部楼层
发表于 2025-3-24 09:36:56 | 显示全部楼层
发表于 2025-3-24 12:42:45 | 显示全部楼层
https://doi.org/10.1007/978-3-322-89179-2Systems of equations over .-continuous semirings can be mapped to context-free grammars in a natural way. We show how an analysis of the derivation trees of the grammar yields new algorithms for approximating and even computing exactly the least solution of the system.
发表于 2025-3-24 16:16:25 | 显示全部楼层
发表于 2025-3-24 19:21:24 | 显示全部楼层
发表于 2025-3-25 02:26:19 | 显示全部楼层
https://doi.org/10.1007/978-3-662-26470-6We define Boolean algebras over nominal sets with a function symbol И mirroring the И ‘fresh name’ quantifier (Banonas), and dual notions of nominal topology and Stone space. We prove a representation theorem over fields of nominal sets, and extend this to a Stone duality.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 16:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表