找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebra; Rings, Modules and C Carl Faith Book 1973 Springer-Verlag, Berlin · Heidelberg 1973 Autodesk Maya.Coproduct.Kategorie.Modul.algebr

[复制链接]
查看: 29479|回复: 54
发表于 2025-3-21 19:22:08 | 显示全部楼层 |阅读模式
期刊全称Algebra
期刊简称Rings, Modules and C
影响因子2023Carl Faith
视频video
学科分类Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Algebra; Rings, Modules and C Carl Faith Book 1973 Springer-Verlag, Berlin · Heidelberg 1973 Autodesk Maya.Coproduct.Kategorie.Modul.algebr
影响因子VI of Oregon lectures in 1962, Bass gave simplified proofs of a number of "Morita Theorems", incorporating ideas of Chase and Schanuel. One of the Morita theorems characterizes when there is an equivalence of categories mod-A R::! mod-B for two rings A and B. Morita‘s solution organizes ideas so efficiently that the classical Wedderburn-Artin theorem is a simple consequence, and moreover, a similarity class [AJ in the Brauer group Br(k) of Azumaya algebras over a commutative ring k consists of all algebras B such that the corresponding categories mod-A and mod-B consisting of k-linear morphisms are equivalent by a k-linear functor. (For fields, Br(k) consists of similarity classes of simple central algebras, and for arbitrary commutative k, this is subsumed under the Azumaya [51]1 and Auslander-Goldman [60J Brauer group. ) Numerous other instances of a wedding of ring theory and category (albeit a shot­ gun wedding!) are contained in the text. Furthermore, in. my attempt to further simplify proofs, notably to eliminate the need for tensor products in Bass‘s exposition, I uncovered a vein of ideas and new theorems lying wholely within ring theory. This constitutes much of Chapter 4
Pindex Book 1973
The information of publication is updating

书目名称Algebra影响因子(影响力)




书目名称Algebra影响因子(影响力)学科排名




书目名称Algebra网络公开度




书目名称Algebra网络公开度学科排名




书目名称Algebra被引频次




书目名称Algebra被引频次学科排名




书目名称Algebra年度引用




书目名称Algebra年度引用学科排名




书目名称Algebra读者反馈




书目名称Algebra读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:49:27 | 显示全部楼层
发表于 2025-3-22 03:29:06 | 显示全部楼层
发表于 2025-3-22 07:35:53 | 显示全部楼层
发表于 2025-3-22 11:23:35 | 显示全部楼层
发表于 2025-3-22 14:32:26 | 显示全部楼层
Abelian Categorieson 6.17), .. inherits the following properties from .: (4) (finitely) complete; (2) (finite) products; (3) kernels or equalizers; (4) images, sums, or (finite) intersections; (5) normality with epic images; (6) additive; (7) exact; (8) abelian; (9) exact and locally small (assuming . is small). More
发表于 2025-3-22 19:35:31 | 显示全部楼层
General Wedderburn Theoremsbecause many properties of a module are characterizable by properties of its endomorphism ring. Indeed, some modules over certain rings are determined by their endomorphism rings, which is a way of saying that the modules are isomorphic if and only if their endomorphism rings are isomorphic . rings.
发表于 2025-3-22 21:14:37 | 显示全部楼层
Semisimple Modules and Homological Dimensionmple Artinian ring is semisimple. Finite ring products of simple Artinian rings are also semisimple. The Wedderburn-Artin theorem implies the converse: Every semisimple ring is isomorphic to a finite product of full matrix rings of various degrees over various fields. These rings are also characteri
发表于 2025-3-23 04:18:20 | 显示全部楼层
发表于 2025-3-23 07:30:16 | 显示全部楼层
Tensor Products and Flat Modules sets, then for each . ∈ . there is a mapping ..: . → ., defined by the formula .. (.) = . (., .) ∀ . ∈ .. Symmetrically, if . ∈ ., then ..:. → . is defined by the formula .. (.) = . (., .) ∀. ∈ .. A mapping .:.×. → . is . in case ..:.→. and ..:. → . are group homomorphisms ∀. ∈ .,. ∈ .. A . map .:.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 01:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表