找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebra; An Approach via Modu William A. Adkins,Steven H. Weintraub Textbook 1992 Springer Science+Business Media New York 1992 Permutatio

[复制链接]
楼主: 畸齿矫正学
发表于 2025-3-23 13:02:02 | 显示全部楼层
Groups,In this chapter we introduce groups and prove some of the basic theorems in group theory. One of these, the structure theorem for finitely generated abelian groups, we do not prove here but instead derive it as a corollary of the more general structure theorem for finitely generated modules over a PID (see Theorem 3.7.22).
发表于 2025-3-23 13:51:44 | 显示全部楼层
Rings,(1.1) Definition. . ring (.,+,) . +: . ×.→. (.) . : . ×.→. (.) ..
发表于 2025-3-23 21:47:07 | 显示全部楼层
发表于 2025-3-23 23:50:03 | 显示全部楼层
发表于 2025-3-24 05:28:55 | 显示全部楼层
Group Representations,We begin by defining the objects that we are interested in studying. Recall that if . is a ring and . is a group, then .(.) denotes the group ring of . with coefficients from .. The multiplication on .(.) is the convolution product (see Example 2.1.10 (15)).
发表于 2025-3-24 06:47:34 | 显示全部楼层
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/152413.jpg
发表于 2025-3-24 11:20:00 | 显示全部楼层
Algebra978-1-4612-0923-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
发表于 2025-3-24 15:37:58 | 显示全部楼层
Linear Algebra,al form theory for a linear transformation from a vector space to itself. The fundamental results will be presented in Section 4.4. We will start with a rather detailed introduction to the elementary aspects of matrix algebra, including the theory of determinants and matrix representation of linear
发表于 2025-3-24 21:37:20 | 显示全部楼层
Matrices over PIDs,y if the .[.]-modules . and . are isomorphic (Theorem 4.4.2). Since the structure theorem for finitely generated torsion .[.]-modules gives a criterion for isomorphism in terms of the invariant factors (or elementary divisors), one has a powerful tool for studying linear transformations, up to simil
发表于 2025-3-25 02:29:14 | 显示全部楼层
Bilinear and Quadratic Forms, means of the operations (.+.)(.)=.(.)+.(.) and (.)(.)= .(.(.)) for all .. Moreover, if . then Hom.(.)= End .(.) is a ring under the multiplication (.)(.)=.(.(.)). An .-module ., which is also a ring, is called an .-algebra if it satisfies the extra axiom .(.)=(.).=.(.) for all . ∈ . and . ∈ .. Thus
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 13:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表