找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Adventures in Stochastic Processes; Sidney I. Resnick Textbook 2002 Springer Science+Business Media New York 2002 Branching process.Browni

[复制链接]
楼主: Adentitious
发表于 2025-3-25 05:36:55 | 显示全部楼层
发表于 2025-3-25 08:21:06 | 显示全部楼层
发表于 2025-3-25 15:00:05 | 显示全部楼层
Magnetic Integration of , Filters,cally distributed random variables. With such a simple description, one wonders how flexible and powerful a tool renewal processes can be. Despite the simple description, renewal theory is one of the most basic of the building blocks in applied probability. Often a complex stochastic model has one o
发表于 2025-3-25 18:18:58 | 显示全部楼层
https://doi.org/10.1007/978-981-10-7004-4f such models already. Renewal processes distribute points on [0, ∞) so that the gaps between points are iid random variables and the Poisson process on [0, ∞) is a renewal process which distributes points so the gaps are iid exponential random variables.
发表于 2025-3-25 22:38:52 | 显示全部楼层
Peter I. Chang,Sean B. Andersson. is discrete. Usually we can suppose that . = {0, 1, … }. The succession of states visited still follows a discrete parameter Markov chain but now the flow of time is perturbed by exponentially distributed holding times in each state. An easy generalization of the dissection argument of Chapter 2 s
发表于 2025-3-26 01:05:22 | 显示全部楼层
发表于 2025-3-26 04:36:18 | 显示全部楼层
发表于 2025-3-26 10:21:00 | 显示全部楼层
发表于 2025-3-26 15:55:12 | 显示全部楼层
发表于 2025-3-26 19:42:55 | 显示全部楼层
Point Processes,f such models already. Renewal processes distribute points on [0, ∞) so that the gaps between points are iid random variables and the Poisson process on [0, ∞) is a renewal process which distributes points so the gaps are iid exponential random variables.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 04:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表