找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 The Editor(s) (if applicab

[复制链接]
楼主: 小故障
发表于 2025-3-23 10:40:41 | 显示全部楼层
发表于 2025-3-23 16:19:33 | 显示全部楼层
发表于 2025-3-23 20:15:49 | 显示全部楼层
Grouping-Shuffling Particle Swarm Optimization: An Improved PSO for Continuous Optimizationswarm optimization (PSO) and shuffled frog leaping algorithm (SFLA) for continuous optimization problems. In the proposed algorithm, each particle automatically and periodically executes grouping and shuffling operations in its flight learning evolutionary process. By testing on 4 benchmark function
发表于 2025-3-24 01:21:57 | 显示全部楼层
发表于 2025-3-24 03:23:42 | 显示全部楼层
An Improved Probability Particle Swarm Optimization Algorithmwo normal distributions are used to describe the distributions of particle positions, respectively. One is the normal distribution with the global best position as mean value and the difference between the current fitness and the global best fitness as standard deviation while another is the distrib
发表于 2025-3-24 07:14:13 | 显示全部楼层
发表于 2025-3-24 14:07:54 | 显示全部楼层
发表于 2025-3-24 15:41:47 | 显示全部楼层
发表于 2025-3-24 19:37:56 | 显示全部楼层
Improved Quantum Particle Swarm Optimization by Bloch Spheree Swarm Optimization (PSO). QPSO performs better than normal PSO on several benchmark problems. However, QPSO’s quantum bit(Qubit) is still in Hilbert space’s unit circle with only one variable, so the quantum properties have been undermined to a large extent. In this paper, the Bloch Sphere encodin
发表于 2025-3-25 02:52:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 13:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表