找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Swarm Intelligence; 4th International Co Ying Tan,Yuhui Shi,Hongwei Mo Conference proceedings 2013 Springer-Verlag Berlin Heide

[复制链接]
楼主: lexicographer
发表于 2025-3-25 06:30:15 | 显示全部楼层
https://doi.org/10.1007/978-3-540-36856-4timization (PSO) algorithm, where the choice of the parameters is inspired by [4], in order to avoid diverging trajectories of the particles, and help the exploration of the feasible set. Moreover, we extend the ideas in [4] and propose a specific set of initial particles position for the bound constrained problem.
发表于 2025-3-25 08:46:04 | 显示全部楼层
Opposition-Based Learning Fully Informed Particle Swarm Optimizer without Velocityorithm is the simpler and more effective. The proposed algorithm is applied to some well-known benchmarks. The relative experimental results show that the algorithm achieves better solutions and faster convergence.
发表于 2025-3-25 15:26:03 | 显示全部楼层
GSO: An Improved PSO Based on Geese Flight Theoryity. Moreover, the rules and hypotheses for formation flight adhere to all five basic principles of swarm intelligence. Therefore, the proposed geese-flight theory is highly rational and has important theoretical innovations, and GSO algorithm can be utilized in a wide range of applications.
发表于 2025-3-25 19:19:17 | 显示全部楼层
发表于 2025-3-25 20:40:09 | 显示全部楼层
Maturity of the Particle Swarm as a Metric for Measuring the Collective Intelligence of the Swarmecause of the lack of the system’s awareness, and that a solution would be some adaptation of particle’s behavioural rules so that the particle could adjust its velocity using control parameters whose value would be derived from inside of the swarm system, without tuning.
发表于 2025-3-26 01:59:24 | 显示全部楼层
发表于 2025-3-26 08:08:12 | 显示全部楼层
Interactive Robotic Fish for the Analysis of Swarm Behavioran execute certain behaviors integrating feedback from the swarm’s position, orientation and velocity. Here, we describe implementation details of our hardware and software and show first results of the analysis of behavioral experiments.
发表于 2025-3-26 09:59:51 | 显示全部楼层
Particle Swarm Optimization in Regression Analysis: A Case Studyto obtain the minimum sum of absolute difference values between observed data points and calculated data points by the regression function. Experimental results show that particle swarm optimization can obtain good performance on regression analysis problems.
发表于 2025-3-26 16:18:24 | 显示全部楼层
Mechanical PSO Aided by Extremum Seeking for Swarm Robots Cooperative Searchhe ES based method is capable of driving robots to the purposed states generated by mechanical PSO without the necessity of robot localization. By this way, the whole robot swarm approaches the searched target cooperatively. This pilot study is verified by numerical experiments in which different robot sensors are mimicked.
发表于 2025-3-26 20:24:51 | 显示全部楼层
Multi-swarm Particle Swarm Optimization with a Center Learning Strategye center position of its own swarm. Experiments are conducted on five test functions to compare with some variants of the PSO. Comparative results on five benchmark functions demonstrate that MPSOCL achieves better performances in both the optimum achieved and convergence performance than other algorithms generally.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-5 03:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表