找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Multimedia Information Processing – PCM 2017; 18th Pacific-Rim Con Bing Zeng,Qingming Huang,Xiaopeng Fan Conference proceedings

[复制链接]
楼主: Roosevelt
发表于 2025-3-23 13:14:33 | 显示全部楼层
An Introduction to Cooperativesxperimental results demonstrate that our method significantly outperform previous baseline SCRC (Spatial Context Recurrent ConvNet) [.] model on Referit dataset [.], moreover, our model is simple to train similar to Faster R-CNN.
发表于 2025-3-23 17:54:36 | 显示全部楼层
发表于 2025-3-23 21:11:53 | 显示全部楼层
发表于 2025-3-24 01:43:29 | 显示全部楼层
发表于 2025-3-24 02:20:16 | 显示全部楼层
发表于 2025-3-24 07:10:13 | 显示全部楼层
An Efficient Feature Selection for SAR Target Classificationnt features. Finally, for target classification, SVM is used as a baseline classifier. Experiments on MSTAR public release dataset are conducted, and the results demonstrate that the proposed method outperforms the state-of-the-art methods.
发表于 2025-3-24 11:44:17 | 显示全部楼层
Automatic Foreground Seeds Discovery for Robust Video Saliency Detectionobal object appearance model using the initial seeds and remove unreliable seeds according to foreground likelihood. Finally, the seeds work as queries to rank all the superpixels in images to generate saliency maps. Experimental results on challenging public dataset demonstrate the advantage of our algorithm over state-of-the-art algorithms.
发表于 2025-3-24 18:34:49 | 显示全部楼层
发表于 2025-3-24 20:05:37 | 显示全部楼层
Object Discovery and Cosegmentation Based on Dense Correspondencessides, due to the powerful feature learning ability of deep models, we adopt VGG features to do unsupervised clustering and find representative candidates as a prior knowledge. Experiments on noisy datasets show the effectiveness of our method.
发表于 2025-3-24 23:38:08 | 显示全部楼层
Fusing Appearance Features and Correlation Features for Face Video Retrievalnd hash learning into a unified optimization framework to guarantee optimal compatibility of appearance features and correlation features. Experiments on two challenging TV-Series datasets demonstrate the effectiveness of the proposed method.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 22:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表