找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Lie Superalgebras; Maria Gorelik,Paolo Papi Book 2014 Springer International Publishing Switzerland 2014 Lie superalgebra.Repr

[复制链接]
楼主: 拼图游戏
发表于 2025-3-23 13:42:41 | 显示全部楼层
发表于 2025-3-23 17:40:07 | 显示全部楼层
发表于 2025-3-23 20:45:49 | 显示全部楼层
Robin Bekrater-Bodmann,Jens Foell,Herta FlorWe compare properties of (the parabolic version of) the BGG category . for semi-simple Lie algebras with those for classical (not necessarily simple) Lie superalgebras.
发表于 2025-3-24 02:14:14 | 显示全部楼层
发表于 2025-3-24 05:37:19 | 显示全部楼层
https://doi.org/10.1007/978-1-349-03188-7We prove an analogue of Serre’s theorem, which describes presentations in terms of Chevalley generators and Serre type relations for the finite dimensional simple contragredient Lie superalgebras relative to all possible choices of Borel sub-algebras.
发表于 2025-3-24 09:22:16 | 显示全部楼层
发表于 2025-3-24 13:38:35 | 显示全部楼层
Clinical Supervision in South Africaesults although the cohomology is not given by the kernel of the Kostant Laplace operator. Based on this cohomology we can derive strong Bernstein-Gelfand-Gelfand resolutions for finite dimensional .(1|2.)-modules. Then we state the Bott-Borel-Weil theorem which follows immediately from the Bott-Kos
发表于 2025-3-24 18:33:37 | 显示全部楼层
Robin Bekrater-Bodmann,Jens Foell,Herta Florded if there is a uniform bound on the dimension of a weight space. The minimum bound is called the degree of .. For . = .(2,1, α), we prove that every simple weight module . is bounded and has degree less than or equal to 8. This bound is attained by a cuspidal module . if and only if . belongs to
发表于 2025-3-24 22:03:54 | 显示全部楼层
发表于 2025-3-25 01:57:30 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-3354-6ction for the construction of classical .-algebras within the framework of Poisson vertex algebras and we establish, under certain sufficient conditions, the applicability of the Lenard-Magri scheme of integrability and the existence of the corresponding integrable hierarchy of bi-Hamiltonian equati
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 12:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表