用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Intelligent Data Analysis VIII; 8th International Sy Niall M. Adams,Céline Robardet,Jean-François Bouli Conference proceedings

[复制链接]
查看: 19006|回复: 60
发表于 2025-3-21 18:18:13 | 显示全部楼层 |阅读模式
期刊全称Advances in Intelligent Data Analysis VIII
期刊简称8th International Sy
影响因子2023Niall M. Adams,Céline Robardet,Jean-François Bouli
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Advances in Intelligent Data Analysis VIII; 8th International Sy Niall M. Adams,Céline Robardet,Jean-François Bouli Conference proceedings
Pindex Conference proceedings 2009
The information of publication is updating

书目名称Advances in Intelligent Data Analysis VIII影响因子(影响力)




书目名称Advances in Intelligent Data Analysis VIII影响因子(影响力)学科排名




书目名称Advances in Intelligent Data Analysis VIII网络公开度




书目名称Advances in Intelligent Data Analysis VIII网络公开度学科排名




书目名称Advances in Intelligent Data Analysis VIII被引频次




书目名称Advances in Intelligent Data Analysis VIII被引频次学科排名




书目名称Advances in Intelligent Data Analysis VIII年度引用




书目名称Advances in Intelligent Data Analysis VIII年度引用学科排名




书目名称Advances in Intelligent Data Analysis VIII读者反馈




书目名称Advances in Intelligent Data Analysis VIII读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:32:24 | 显示全部楼层
发表于 2025-3-22 02:13:18 | 显示全部楼层
978-3-642-03914-0Springer-Verlag Berlin Heidelberg 2009
发表于 2025-3-22 07:41:56 | 显示全部楼层
发表于 2025-3-22 12:31:37 | 显示全部楼层
Petteri Kaski,Patric R.J. Östergårdrely random configurations, is a powerful method to unravel their underlying interactions. I study here the spatial organization of retail commercial activities. From pure location data, network analysis leads to a community structure that closely follows the commercial classification of the US Depa
发表于 2025-3-22 13:26:37 | 显示全部楼层
Petteri Kaski,Patric R.J. Östergård multi-dimensional data streams. We use relative entropy, also known as the Kullback-Leibler distance, to measure the statistical distance between two distributions. In the context of a multi-dimensional data stream, the distributions are generated by data from two sliding windows. We maintain a sam
发表于 2025-3-22 17:10:18 | 显示全部楼层
发表于 2025-3-22 22:32:23 | 显示全部楼层
Definitions and Basic Properties,hich are then scaled separately. The MDS items can be split into sub-problems using demographic variables in order to choose the sections of the data with optimal and sub-optimal mappings. The lower dimensional solutions from the scaled sub-problems are recombined by taking sample points from each s
发表于 2025-3-23 01:24:58 | 显示全部楼层
Easily Reconstructable Functions,in an optimal clustering for the considered data. The clustering aggregation concept tries to bypass this problem by generating a set of separate, heterogeneous partitionings of the same data set, from which an aggregate clustering is derived. As of now, almost every existing aggregation approach co
发表于 2025-3-23 07:06:35 | 显示全部楼层
Martin Holeňa,Petr Pulc,Martin Kopp the human perception of time series. A time series and its translated copy appear dissimilar under the Euclidean distance (because the comparison is made pointwise), whereas a human would perceive both series as similar. As the human perception is tolerant to translational effects, using the cross
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表