找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Information Retrieval; 46th European Confer Nazli Goharian,Nicola Tonellotto,Iadh Ounis Conference proceedings 2024 The Editor(

[复制链接]
楼主: 武士精神
发表于 2025-3-26 21:28:01 | 显示全部楼层
发表于 2025-3-27 04:00:00 | 显示全部楼层
978-3-031-56062-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-27 08:00:54 | 显示全部楼层
Rashmi Anoop Patil,Seeram Ramakrishnaion about entities and items. Recently, models based on graph neural networks (GNNs) have adopted knowledge graphs to capture further high-order structural information, such as shared preferences between users and similarities between items. However, existing GNN-based methods suffer from two challe
发表于 2025-3-27 12:11:53 | 显示全部楼层
发表于 2025-3-27 16:54:55 | 显示全部楼层
发表于 2025-3-27 18:36:34 | 显示全部楼层
发表于 2025-3-27 23:35:00 | 显示全部楼层
发表于 2025-3-28 06:09:40 | 显示全部楼层
Takuya Nakashima,Tsuyoshi Kawai most well-established retrieval frameworks is the two-stage retrieval pipeline, whereby an inexpensive retrieval algorithm retrieves a subset of candidate documents from a corpus, and a more sophisticated (but costly) model re-ranks these candidates. A notable limitation of this two-stage framework
发表于 2025-3-28 06:24:13 | 显示全部楼层
发表于 2025-3-28 12:55:10 | 显示全部楼层
https://doi.org/10.1007/978-3-319-06173-3oisy query consisting of both useful and useless features (e.g., keywords). Our method finds target instances and trains a classifier simultaneously in a greedy strategy: it selects an instance most likely to be of the target class, manually label it, and add it to the training set to retrain the cl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 13:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表