用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Information Retrieval; 41st European Confer Leif Azzopardi,Benno Stein,Djoerd Hiemstra Conference proceedings 2019 Springer Nat

[复制链接]
查看: 27063|回复: 57
发表于 2025-3-21 19:53:32 | 显示全部楼层 |阅读模式
期刊全称Advances in Information Retrieval
期刊简称41st European Confer
影响因子2023Leif Azzopardi,Benno Stein,Djoerd Hiemstra
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Advances in Information Retrieval; 41st European Confer Leif Azzopardi,Benno Stein,Djoerd Hiemstra Conference proceedings 2019 Springer Nat
影响因子.This two-volume set LNCS 11437 and 11438 constitutes the refereed proceedings of the 41st European Conference on IR Research, ECIR 2019, held in Cologne, Germany, in April 2019.. The 48 full papers presented together with 2 keynote papers, 44 short papers, 8 demonstration papers, 8 invited CLEF papers, 11 doctoral consortium papers, 4 workshop papers, and 4 tutorials were carefully reviewed and selected from 365 submissions. They were organized in topical sections named: Modeling Relations; Classification and Search; Recommender Systems; Graphs; Query Analytics; Representation; Reproducibility (Systems); Reproducibility (Application); Neural IR; Cross Lingual IR; QA and Conversational Search; Topic Modeling; Metrics; Image IR; Short Papers; Demonstration Papers; CLEF Organizers Lab Track; Doctoral Consortium Papers; Workshops; and Tutorials..
Pindex Conference proceedings 2019
1 Front Matter
Abstract
2
Abstract
3 Open-Set Web Genre Identification Using Distributional Features and Nearest Neighbors Distance Ratio Dimitrios Pritsos,Anderson Rocha,Efstathios Stamatatos
Abstract
4 Exploiting Global Impact Ordering for Higher Throughput in Selective Search Michał Siedlaczek,Juan Rodriguez,Torsten Suel
Abstract
5 Cross-Domain Recommendation via Deep Domain Adaptation Heishiro Kanagawa,Hayato Kobayashi,Nobuyuki Shimizu,Yukihiro Tagami,Taiji Suzuki
Abstract
6 It’s only Words and Words Are All I Have Manash Pratim Barman,Kavish Dahekar,Abhinav Anshuman,Amit Awekar
Abstract
7 Modeling User Return Time Using Inhomogeneous Poisson Process Mohammad Akbari,Alberto Cetoli,Stefano Bragaglia,Andrew D. O’Harney,Marc Sloan,Jun Wang
Abstract
8 Inductive Transfer Learning for Detection of Well-Formed Natural Language Search Queries Bakhtiyar Syed,Vijayasaradhi Indurthi,Manish Gupta,Manish Shrivastava,Vasudeva Varma
Abstract
9 Towards Spatial Word Embeddings Paul Mousset,Yoann Pitarch,Lynda Tamine
Abstract
10 Asymmetry Sensitive Architecture for Neural Text Matching Thiziri Belkacem,Jose G. Moreno,Taoufiq Dkaki,Mohand Boughanem
Abstract
11 QGraph: A Quality Assessment Index for Graph Clustering Maria Halkidi,Iordanis Koutsopoulos
Abstract
12 A Neural Approach to Entity Linking on Wikidata
Abstract
13 Self-attentive Model for Headline Generation Daniil Gavrilov,Pavel Kalaidin,Valentin Malykh
Abstract
14 Can Image Captioning Help Passage Retrieval in Multimodal Question Answering? Shurong Sheng,Katrien Laenen,Marie-Francine Moens
Abstract
15 A Simple Neural Approach to Spatial Role Labelling Nitin Ramrakhiyani,Girish Palshikar,Vasudeva Varma
Abstract
16 Neural Diverse Abstractive Sentence Compression Generation Mir Tafseer Nayeem,Tanvir Ahmed Fuad,Yllias Chali
Abstract
17 Fully Contextualized Biomedical NER Ashim Gupta,Pawan Goyal,Sudeshna Sarkar,Mahanandeeshwar Gattu
Abstract
18 DeepTagRec: A Content-cum-User Based Tag Recommendation Framework for Stack Overflow Suman Kalyan Maity,Abhishek Panigrahi,Sayan Ghosh,Arundhati Banerjee,Pawan Goyal,Animesh Mukherjee
Abstract
19 Document Performance Prediction for Automatic Text Classification Gustavo Penha,Raphael Campos,Sérgio Canuto,Marcos André Gonçalves,Rodrygo L. T. Santos
Abstract
20 Misleading Metadata Detection on YouTube Priyank Palod,Ayush Patwari,Sudhanshu Bahety,Saurabh Bagchi,Pawan Goyal
Abstract
书目名称Advances in Information Retrieval影响因子(影响力)




书目名称Advances in Information Retrieval影响因子(影响力)学科排名




书目名称Advances in Information Retrieval网络公开度




书目名称Advances in Information Retrieval网络公开度学科排名




书目名称Advances in Information Retrieval被引频次




书目名称Advances in Information Retrieval被引频次学科排名




书目名称Advances in Information Retrieval年度引用




书目名称Advances in Information Retrieval年度引用学科排名




书目名称Advances in Information Retrieval读者反馈




书目名称Advances in Information Retrieval读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:23:50 | 显示全部楼层
发表于 2025-3-22 01:00:35 | 显示全部楼层
0302-9743 oducibility (Systems); Reproducibility (Application); Neural IR; Cross Lingual IR; QA and Conversational Search; Topic Modeling; Metrics; Image IR; Short Papers; Demonstration Papers; CLEF Organizers Lab Track; Doctoral Consortium Papers; Workshops; and Tutorials..978-3-030-15718-0978-3-030-15719-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 05:12:03 | 显示全部楼层
发表于 2025-3-22 11:59:28 | 显示全部楼层
发表于 2025-3-22 13:43:02 | 显示全部楼层
发表于 2025-3-22 17:49:55 | 显示全部楼层
Personal Experiences of Six Patients,ults on the New York Times Annotated corpus with ROUGE-L F1-score 24.84 and ROUGE-2 F1-score 13.48. We also present the new RIA corpus and reach ROUGE-L F1-score 36.81 and ROUGE-2 F1-score 22.15 on it.
发表于 2025-3-23 00:55:02 | 显示全部楼层
https://doi.org/10.1007/978-3-031-12863-9oles - Trajector, Landmark and Spatial Indicator. Our approach outperforms the task submission results and other state-of-the-art results on these datasets. We also include a discussion on the explainability of our model.
发表于 2025-3-23 03:29:30 | 显示全部楼层
Joannes Rosa and His Commentary on the ,,ur experiments on the human-generated abstractive sentence compression datasets and evaluate our system on several newly proposed Machine Translation (.) evaluation metrics. Our experiments demonstrate that the methods bring significant improvements over the state-of-the-art methods across different metrics.
发表于 2025-3-23 07:36:07 | 显示全部楼层
The , in the Renaissance: A General Survey,nd help further boost the tagger’s performance. Our experiments with this architecture have shown to improve state-of-the-art F1 score on 3 widely used biomedical corpora for NER. We also perform analysis to understand the specific cases where our contextualized model is superior to a strong baseline.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 15:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表