找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Harmonic Analysis and Partial Differential Equations; Vladimir Georgiev,Tohru Ozawa,Jens Wirth Conference proceedings 2020 Spr

[复制链接]
楼主: 愚蠢地活
发表于 2025-3-26 21:18:45 | 显示全部楼层
Nilam Sinha,Eoin C. Whelan,Ralph L. BrinsterIn this paper we present an approach to growth estimates of generalized eigenfunctions for exterior magnetic Schrödinger operators with exploding and oscillating long-range potentials. Also we apply them to show the principle of limiting absorption.
发表于 2025-3-27 04:47:01 | 显示全部楼层
发表于 2025-3-27 06:43:42 | 显示全部楼层
https://doi.org/10.1007/978-4-431-55766-1ocal smoothing estimate of Mockenhaupt, Seeger and Sogge, and is a global result with respect to the space variable. The novelty in our approach is the use of harmonic analysis of Hermite functions in the study of Fourier integral operators.
发表于 2025-3-27 10:34:20 | 显示全部楼层
发表于 2025-3-27 14:57:40 | 显示全部楼层
Chillen als jugendkulturelle Praxis. Birkäuser, Boston, 2016) on certain Gelfand triples for homogeneous Lie groups .. Even for the Heisenberg group . there seems to be no simple intrinsic characterization for the Fourier image of the Schwartz space of rapidly decreasing smooth functions ., see (Geller, J Funct Anal 36(2), 205–254, 1
发表于 2025-3-27 21:49:57 | 显示全部楼层
发表于 2025-3-27 22:37:48 | 显示全部楼层
发表于 2025-3-28 04:42:15 | 显示全部楼层
Chimera Patterns in Complex Networks,sedness and scattering of radial solutions under scaling, variational, and rigidity assumptions for .. We also provide sharp finite time blowup results for nonradial and radial solutions. For this we utilize the localized virial identity.
发表于 2025-3-28 06:16:49 | 显示全部楼层
https://doi.org/10.1007/978-3-030-21714-3the critical order. In Masaki and the first author (Differ Integr Equ 32(3–4):121–138, 2019), they obtain the upper bound of the lifespan of solutions to our equation via a test function method introduced by Zhang (Duke Math J 97(3):515–539, 1999; C R Acad Sci Paris Sér I Math 333(2):109–114, 2001).
发表于 2025-3-28 10:34:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 05:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表