找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Commutative Algebra; Dedicated to David F Ayman Badawi,Jim Coykendall Book 2019 Springer Nature Singapore Pte Ltd. 2019 Commuta

[复制链接]
楼主: 强烈的愿望
发表于 2025-3-26 23:46:30 | 显示全部楼层
Optimierung nach dem BPR-Projekt Therefore, the .-local domains (i.e., the local domains, with maximal ideal being a .-ideal) are “cousins” of valuation domains, but, as we will see in detail, not so close. Indeed, for instance, a localization of a .-local domain is not necessarily .-local, but of course a localization of a valuat
发表于 2025-3-27 02:50:51 | 显示全部楼层
https://doi.org/10.1007/978-3-663-14687-2 (., .) is said to be a strongly divided pair if, for each ring . such that . and each . such that ., one has .. Let . be the integral closure of . in .. Then (., .) is a strongly divided pair if and only if . and . have the same sets of nonmaximal prime ideals and, for each maximal ideal . of ., .
发表于 2025-3-27 05:26:43 | 显示全部楼层
发表于 2025-3-27 10:41:55 | 显示全部楼层
https://doi.org/10.1007/978-3-642-01588-5 any commutative ring ., the polynomial ring . is additively regular, moreover if ., then . is regular when . is regular. We introduce several stronger types of additively regular rings where the choice for . is restricted: . is strongly additively regular if for each pair of elements . with . regul
发表于 2025-3-27 15:32:27 | 显示全部楼层
https://doi.org/10.1007/1-4020-2198-4ere is an equation . with . for .. The set of all elements that are .-integral over . is called the .-integral closure of .. This paper surveys recent literature which studies .-reductions and .-integral closure of ideals in arbitrary domains as well as in special contexts such as Prüfer .-multiplic
发表于 2025-3-27 21:26:38 | 显示全部楼层
发表于 2025-3-27 22:38:51 | 显示全部楼层
发表于 2025-3-28 04:16:06 | 显示全部楼层
发表于 2025-3-28 06:30:27 | 显示全部楼层
https://doi.org/10.1007/1-4020-2198-4ces . and . are adjacent if and only if .. The . of . with respect to the ideal ., denoted by ., is the graph on vertices . for some ., where distinct vertices . and . are adjacent if and only if .. In this paper, we cover two main topics: isomorphisms and planarity of zero-divisor graphs. For each
发表于 2025-3-28 12:26:00 | 显示全部楼层
https://doi.org/10.1007/978-981-13-7028-1Commutative Ring; Zero-divisor Graph; Integral Domains; Pseudographs; Classical Rings; combinatorics
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 04:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表