找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Problems in Constructive Approximation; 3rd International Do Martin D. Buhmann,Detlef H. Mache Conference proceedings 2003 Springe

[复制链接]
楼主: Halloween
发表于 2025-3-23 13:07:39 | 显示全部楼层
发表于 2025-3-23 15:58:33 | 显示全部楼层
Thi Kim Thoa Thieu,Roderick Melnikon are uniformly bounded in [-1, 1] then for every .∈ .[-1, 1] and . > 0 there exists a sequence of polynomials ϕ. of degree ≤ .(l+.) (. ∈ N) which interpolates . at the points .. and it tends to . uniformly in [-1, 1]. The weighted versions of this result were proved in [19] and [18] using Freud-ty
发表于 2025-3-23 18:28:28 | 显示全部楼层
Advanced Problems in Constructive Approximation978-3-0348-7600-1Series ISSN 0373-3149 Series E-ISSN 2296-6072
发表于 2025-3-23 22:32:29 | 显示全部楼层
Svetlana Martynova,Denis Bugaevial bases by means of .. Such a construction leads to the problem of finding sets of (. + 1). points on the sphere that admit unique polynomial interpolation. Finally, we present a possible construction of polynomial wavelets on the sphere.
发表于 2025-3-24 05:44:57 | 显示全部楼层
发表于 2025-3-24 08:19:26 | 显示全部楼层
https://doi.org/10.1007/978-3-031-34960-7 suitable iterates of Mache operators. The preservation properties of Mache operators lead to qualitative properties of the solution of the associated Cauchy problem. A new Chernoff type approach to the semigroup is presented, as well as quantitative results related to it.
发表于 2025-3-24 14:45:49 | 显示全部楼层
发表于 2025-3-24 15:26:27 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-7600-1Approximation; Interpolation; Numerical analysis; approximation theory; computational mathematics; fourie
发表于 2025-3-24 22:21:43 | 显示全部楼层
978-3-0348-7602-5Springer Basel AG 2003
发表于 2025-3-25 00:57:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 11:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表