找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Linear Modeling; Statistical Learning Ronald Christensen Textbook 2019Latest edition Springer Nature Switzerland AG 2019 ANOVA.Exc

[复制链接]
查看: 54626|回复: 59
发表于 2025-3-21 19:28:12 | 显示全部楼层 |阅读模式
期刊全称Advanced Linear Modeling
期刊简称Statistical Learning
影响因子2023Ronald Christensen
视频video
发行地址Presents a collection of methodologies formulated and developed in the framework of linear models.Offers accompanying R code online for the included analyses.Features several new chapters, as well as
学科分类Springer Texts in Statistics
图书封面Titlebook: Advanced Linear Modeling; Statistical Learning Ronald Christensen Textbook 2019Latest edition Springer Nature Switzerland AG 2019 ANOVA.Exc
影响因子Now in its third edition, this companion volume to Ronald Christensen’s. Plane .Answers to Complex Questions. uses three fundamental concepts from standard linear model theory—best linear prediction, projections, and Mahalanobis distance— to extend standard linear modeling into the realms of Statistical Learning and Dependent Data.  .This new edition features a wealth of new and revised content.  In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines.  For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction.  While numerous references to .Plane Answers. are made throughout the volume, .Advanced Linear Modeling. can be used on its own given a solid background in linear models.  Accompanying R code for the analyses is available online..
Pindex Textbook 2019Latest edition
The information of publication is updating

书目名称Advanced Linear Modeling影响因子(影响力)




书目名称Advanced Linear Modeling影响因子(影响力)学科排名




书目名称Advanced Linear Modeling网络公开度




书目名称Advanced Linear Modeling网络公开度学科排名




书目名称Advanced Linear Modeling被引频次




书目名称Advanced Linear Modeling被引频次学科排名




书目名称Advanced Linear Modeling年度引用




书目名称Advanced Linear Modeling年度引用学科排名




书目名称Advanced Linear Modeling读者反馈




书目名称Advanced Linear Modeling读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:21:44 | 显示全部楼层
发表于 2025-3-22 04:02:03 | 显示全部楼层
Frequency Analysis of Time Series,duction is helpful for policymakers, researchers, students, and other people to upgrade life quality. Such knowledge is valuable because it is up-to-date, generalizable, and sensible based on the analytic-functionalist theoretical framework and statistical estimation.
发表于 2025-3-22 06:19:56 | 显示全部楼层
发表于 2025-3-22 08:53:15 | 显示全部楼层
Linear Models for Spatial Data: Kriging,e theory we develop in this chapter will provide the basis for the nonparametric models of technology developed in Chapter 4 and the efficiency and productivity analysis undertaken in Parts II and III.
发表于 2025-3-22 15:40:41 | 显示全部楼层
1431-875X ers. are made throughout the volume, .Advanced Linear Modeling. can be used on its own given a solid background in linear models.  Accompanying R code for the analyses is available online..978-3-030-29166-2978-3-030-29164-8Series ISSN 1431-875X Series E-ISSN 2197-4136
发表于 2025-3-22 18:45:50 | 显示全部楼层
发表于 2025-3-22 21:54:24 | 显示全部楼层
Generalized Multivariate Linear Models and Longitudinal Data,n of adaptive concepts, which are capable of placing computational resources automatically where needed to realize the desired quality of the solution, e.g. in terms of error tolerances, at the lowest computational effort.
发表于 2025-3-23 05:06:19 | 显示全部楼层
Mixed Models and Variance Components, greater. Improved knowledge of mechanisms, signaling pathways, and molecular interactions with the digestive tract and host organism is necessary to exploit the potential of the microbiome to stabilize animal health.
发表于 2025-3-23 06:48:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 02:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表