找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Deep Learning for Engineers and Scientists; A Practical Approach Kolla Bhanu Prakash,Ramani Kannan,G. R. Kanagachid Book 2021 The

[复制链接]
查看: 32631|回复: 49
发表于 2025-3-21 18:36:45 | 显示全部楼层 |阅读模式
期刊全称Advanced Deep Learning for Engineers and Scientists
期刊简称A Practical Approach
影响因子2023Kolla Bhanu Prakash,Ramani Kannan,G. R. Kanagachid
视频video
发行地址Presents practical basics to advanced concepts in deep learning and how to apply them through various projects.Discusses topics such as deep learning in smart grids and renewable energy & sustainable
学科分类EAI/Springer Innovations in Communication and Computing
图书封面Titlebook: Advanced Deep Learning for Engineers and Scientists; A Practical Approach Kolla Bhanu Prakash,Ramani Kannan,G. R. Kanagachid Book 2021 The
影响因子.This book provides a complete illustration of deep learning concepts with case-studies and practical examples useful for real time applications. This book introduces a broad range of topics in deep learning. The authors start with the fundamentals, architectures, tools needed for effective implementation for scientists. They then present technical exposure towards deep learning using Keras, Tensorflow, Pytorch and Python. They proceed with advanced concepts with hands-on sessions for deep learning. Engineers, scientists, researches looking for a practical approach to deep learning will enjoy this book..Presents practical basics to advanced concepts in deep learning and how to apply them through various projects;.Discusses topics such as deep learning in smart grids and renewable energy & sustainable development;.Explains how to implement advanced techniques in deep learning using Pytorch, Keras, Python programming.. .
Pindex Book 2021
The information of publication is updating

书目名称Advanced Deep Learning for Engineers and Scientists影响因子(影响力)




书目名称Advanced Deep Learning for Engineers and Scientists影响因子(影响力)学科排名




书目名称Advanced Deep Learning for Engineers and Scientists网络公开度




书目名称Advanced Deep Learning for Engineers and Scientists网络公开度学科排名




书目名称Advanced Deep Learning for Engineers and Scientists被引频次




书目名称Advanced Deep Learning for Engineers and Scientists被引频次学科排名




书目名称Advanced Deep Learning for Engineers and Scientists年度引用




书目名称Advanced Deep Learning for Engineers and Scientists年度引用学科排名




书目名称Advanced Deep Learning for Engineers and Scientists读者反馈




书目名称Advanced Deep Learning for Engineers and Scientists读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:44:47 | 显示全部楼层
发表于 2025-3-22 02:25:05 | 显示全部楼层
发表于 2025-3-22 06:27:15 | 显示全部楼层
R. Ellegast,J. Kupfer,D. Reinert studies that Keras has extensive usage in various structured and unstructured domains. The objective of this chapter is to provide an overview of Keras, its models and layers. Classification (binary/multi-class) and regression models are discussed with help of case studies using Keras.
发表于 2025-3-22 10:34:58 | 显示全部楼层
发表于 2025-3-22 14:24:06 | 显示全部楼层
发表于 2025-3-22 18:49:02 | 显示全部楼层
Diskussion der Mobilitätsarrangementsovering hidden information and making correct predictions, and bioinformatics is no exception. In this review, potential applications of deep learning in bioinformatics research such as genomic sequence analysis, protein structure prediction, biomedical image processing and other omics data analyses have been presented.
发表于 2025-3-23 00:45:50 | 显示全部楼层
发表于 2025-3-23 01:58:18 | 显示全部楼层
https://doi.org/10.1007/978-3-642-72235-6 networks aka ConvNets or CNN and recurrent neural networks or RNN are explained with a few examples and their implementation in Python. Intuitive explanation with easily understandable mathematical interpretation can be seen in this chapter.
发表于 2025-3-23 09:21:31 | 显示全部楼层
https://doi.org/10.1007/978-3-030-66519-7Deep Learning; Autoencoder; Pytorch and Deep Learning; Keras and Deep Learning; Deep dream; Tensorflow; Ne
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 17:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表