找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Adaptive Filtering; Algorithms and Pract Paulo S. R. Diniz Textbook 20134th edition Springer Science+Business Media New York 2013 Adaptive

[复制链接]
楼主: 小客车
发表于 2025-3-25 03:48:52 | 显示全部楼层
Luis M. Camarinha-Matos,Hamideh AfsarmaneshThis chapter briefly describes how to deal with complex signals in adaptive-filtering context in a simple manner; for further details the reader is encouraged to refer to [1–4].
发表于 2025-3-25 07:59:41 | 显示全部楼层
发表于 2025-3-25 12:08:32 | 显示全部楼层
发表于 2025-3-25 18:33:46 | 显示全部楼层
Luís Seabra Lopes,Luís M. Camarinha-Matos the concepts that are directly relevant to adaptive filtering. The properties of thecorrelation matrix of the input signal vector are investigated in some detail, since they play a key role in the statistical analysis of the adaptive-filtering algorithms.
发表于 2025-3-25 22:52:27 | 显示全部楼层
发表于 2025-3-26 03:35:30 | 显示全部楼层
R. Roshardt,C. Uhrhan,T. Waefler,S. Weikective of the alternative LMS-based algorithms is either to reduce computational complexity or convergence time. In this chapter, several LMS-based algorithms are presented and analyzed, namely, the quantized-error algorithms [1–11], the frequency-domain (or transform-domain) LMS algorithm [12–14],
发表于 2025-3-26 07:59:19 | 显示全部楼层
发表于 2025-3-26 09:18:29 | 显示全部楼层
R. Roshardt,C. Uhrhan,T. Waefler,S. Weikient. These characteristics are easily observable in stationary environments. In general fast-converging algorithms tend to be very dynamic, a feature not necessarily advantageous after convergence in a stationary environment. In this chapter, an alternative formulation to govern the updating of the
发表于 2025-3-26 13:07:41 | 显示全部楼层
https://doi.org/10.1007/978-0-387-35065-3alization are very attractive because they allow modular implementation and require a reduced number of arithmetic operations (of order .) [1–7]. As a consequence, the lattice recursive least-squares (LRLS) algorithms are considered fast implementations of the RLS problem.
发表于 2025-3-26 17:51:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-2 06:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表