找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: A Mathematical Introduction to Conformal Field Theory; Based on a Series of Martin Schottenloher Book 19971st edition Springer-Verlag Berli

[复制链接]
楼主: energy
发表于 2025-3-23 11:13:21 | 显示全部楼层
发表于 2025-3-23 14:08:32 | 显示全部楼层
A Mathematical Introduction to Conformal Field Theory978-3-540-70690-8Series ISSN 0940-7677
发表于 2025-3-23 21:17:48 | 显示全部楼层
Gerald L. Gutek,Patricia A. Gutek]. We will assume the Euclidean signature (+, +) on ℝ. (or on surfaces), as it is customary because of the close connection of conformal field theory to statistical mechanics (cf. [BPZ84] and [Gin89]).
发表于 2025-3-23 23:59:41 | 显示全部楼层
The Nature of our Contemporary Conditionit has close connections to string theory and other two-dimensional field theories in physics (cf. e.g. [LPSA94]). In particular, all massless field theories are conformally invariant. The special feature of conformal field theory in two dimensions is the existence of an infinite number of independe
发表于 2025-3-24 03:28:37 | 显示全部楼层
https://doi.org/10.1057/9781403984364e, every finite-dimensional Lie group . has a corresponding Lie algebra Lie . determined up to isomorphism, and every differentiable homomorphism . : . → . of Lie groups induces a Lie-algebra homomorphism Lie . = Ṙ : Lie . → Lie .. Conversely, if . is connected and simply connected, every such Lie-a
发表于 2025-3-24 08:14:05 | 显示全部楼层
发表于 2025-3-24 14:03:46 | 显示全部楼层
发表于 2025-3-24 15:59:03 | 显示全部楼层
发表于 2025-3-24 21:00:04 | 显示全部楼层
Gerald L. Gutek,Patricia A. Gutek. With respect to a suitable mathematical interpretation, the Verlinde formula gives the dimensions of spaces of generalized theta functions (cf. Sect. 10.1). These dimensions and their polynomial behavior (cf. Theorem 10.6) are of special interest in mathematics. Prior to the appearance of the Verl
发表于 2025-3-25 03:04:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 17:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表