找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: A Ludic Journey into Geometric Topology; Ton Marar Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to S

[复制链接]
楼主: Pessimistic
发表于 2025-3-23 11:11:38 | 显示全部楼层
http://image.papertrans.cn/a/image/141367.jpg
发表于 2025-3-23 15:56:06 | 显示全部楼层
https://doi.org/10.1007/978-3-319-11866-6f non-Euclidean geometries. In 1872, Felix Klein presented a way to define geometries without axioms, organizing the space in congruence classes, allowing a multitude of geometries defined in a given space. Klein’s program inaugurated a kind of postmodernity in geometry.
发表于 2025-3-23 19:35:01 | 显示全部楼层
https://doi.org/10.1007/978-3-319-11866-6study of Einstein’s general relativity and, by the end of the century, material science Nobel prize winners benefited from the topological classification of surfaces. Here, using surface planar models and word representation, we show how to identify some surfaces.
发表于 2025-3-23 23:41:12 | 显示全部楼层
https://doi.org/10.1007/978-3-319-11866-6e. Here we describe a four-dimensional place; that is, a portion of a four-dimensional space enclosed by a hypercube. Although we cannot physically enter a four-dimensional place, we can imagine it. There is no magic portal from one world to another of higher dimension.
发表于 2025-3-24 05:10:14 | 显示全部楼层
发表于 2025-3-24 10:04:37 | 显示全部楼层
发表于 2025-3-24 13:20:38 | 显示全部楼层
Advanced Technologies and Societal ChangeFrom Plato to Kepler, some famous philosophers, scientists and alchemists using a remarkable blend of mathematics and faith try to explain the creation of the universe. They make geometric descriptions of allegedly fundamental ingredients of a harmonious cosmos, sometimes scientifically, others poetically.
发表于 2025-3-24 16:14:46 | 显示全部楼层
Andreas Fink,Johannes Lange,Helmut BeikirchClosed non-orientable surfaces are connected sum of projective planes. Here we construct the classical models of the projective plane in three-dimensional space; namely, the sphere with cross-cap, the Steiner Roman surface and the Boy surface.
发表于 2025-3-24 19:31:45 | 显示全部楼层
发表于 2025-3-25 01:33:46 | 显示全部楼层
6楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 21:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表