找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: A Kaleidoscopic View of Graph Colorings; Ping Zhang Book 2016 The Author 2016 chromatic graph theory.chromatic index.chromatic number.edge

[复制链接]
楼主: 助手
发表于 2025-3-26 23:42:56 | 显示全部楼层
Frances Stewart,Sanjaya Lall,Samuel Wangwesh this. On the other hand, if the goal of a graph coloring is only to distinguish every two adjacent vertices in . by means of a vertex coloring, then, of course, this can be accomplished by means of a proper coloring of . and the minimum number of colors needed to do this is the . of .. Among the
发表于 2025-3-27 01:40:11 | 显示全部楼层
https://doi.org/10.1007/978-1-349-12255-4he color of a vertex is the set of colors of the neighbors of the vertex. In this chapter, proper vertex colorings are also discussed that arise from nonproper vertex colorings but here they are defined in terms of multisets rather than sets.
发表于 2025-3-27 07:48:06 | 显示全部楼层
发表于 2025-3-27 13:22:17 | 显示全部楼层
发表于 2025-3-27 13:45:22 | 显示全部楼层
发表于 2025-3-27 17:57:57 | 显示全部楼层
https://doi.org/10.1007/978-3-642-34946-1 coloring of . whose colors are (. + 1)-tuples of nonnegative integers. In this chapter, we discuss the corresponding (. + 1)-tuples when the original coloring is a nonproper coloring. This gives rise to vertex-distinguishing colorings called recognizable colorings.
发表于 2025-3-27 21:55:16 | 显示全部楼层
发表于 2025-3-28 04:43:06 | 显示全部楼层
发表于 2025-3-28 06:48:39 | 显示全部楼层
https://doi.org/10.1007/978-981-10-3467-1In this chapter we describe yet another proper vertex coloring induced by a given nonproper vertex coloring of a graph. This proper vertex coloring is defined with the aid of distances and this too may very well require fewer colors than the chromatic number of the graph.
发表于 2025-3-28 13:18:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 12:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表