找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: A Concise Introduction to Measure Theory; Satish Shirali Textbook 2018 Springer Nature Switzerland AG 2018 Measure and integration.Lebesgu

[复制链接]
查看: 33097|回复: 40
发表于 2025-3-21 17:25:25 | 显示全部楼层 |阅读模式
期刊全称A Concise Introduction to Measure Theory
影响因子2023Satish Shirali
视频video
发行地址Provides a self-contained introduction to abstract measure theory and integration.Includes full solutions to the exercises.Discusses fuzzy measures and unconditional sums
图书封面Titlebook: A Concise Introduction to Measure Theory;  Satish Shirali Textbook 2018 Springer Nature Switzerland AG 2018 Measure and integration.Lebesgu
影响因子This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration..The author takes an approach to integration based on the notion of distribution. This approach relies on deeper properties of the Riemann integral which may not be covered in standard undergraduate courses. It has certain advantages, notably simplifying the extension to "fuzzy" measures, which is one of the many topics covered in the book..This book will be accessible to undergraduate students who have completed a first course in the foundations of analysis. Containing numerous examples as well as fully solved exercises, it is exceptionally well suited for self-study or as a supplement to lecture courses..
Pindex Textbook 2018
The information of publication is updating

书目名称A Concise Introduction to Measure Theory影响因子(影响力)




书目名称A Concise Introduction to Measure Theory影响因子(影响力)学科排名




书目名称A Concise Introduction to Measure Theory网络公开度




书目名称A Concise Introduction to Measure Theory网络公开度学科排名




书目名称A Concise Introduction to Measure Theory被引频次




书目名称A Concise Introduction to Measure Theory被引频次学科排名




书目名称A Concise Introduction to Measure Theory年度引用




书目名称A Concise Introduction to Measure Theory年度引用学科排名




书目名称A Concise Introduction to Measure Theory读者反馈




书目名称A Concise Introduction to Measure Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:17:09 | 显示全部楼层
Front Matterer Automobilindustrie illustrieren die Ausführungen. Das Buch richtet sich vor allem an Planungs- und Betriebsingenieure in der Stückgutindustrie sowie an Studenten entsprechender Fachrichtungen..978-3-642-31945-7978-3-540-89644-9
发表于 2025-3-22 01:04:14 | 显示全部楼层
发表于 2025-3-22 08:17:49 | 显示全部楼层
发表于 2025-3-22 10:42:42 | 显示全部楼层
发表于 2025-3-22 16:47:07 | 显示全部楼层
发表于 2025-3-22 21:05:11 | 显示全部楼层
Wenyin Liu,Yuanchun Shi,Qing Liclass of subsets of the real line. Interchanging the order of summation in repeated sums. Improper integrals over [0, ∞) and their convergence for an increasing (which means nondecreasing throughout this book) sequence of decreasing nonnegative functions.
发表于 2025-3-23 01:01:43 | 显示全部楼层
发表于 2025-3-23 04:38:42 | 显示全部楼层
In Situ Geotechnical Investigationsrals, using simple functions. Integration of measurable functions that may take negative values, elementary properties of the integral. Convergence of integrals of sequences of functions (Fatou’s Lemma and Dominated Convergence Theorem). Subadditive fuzzy measures and analogs of the Minkowski and Hölder Inequalities.
发表于 2025-3-23 06:19:18 | 显示全部楼层
Simona Fontul,José Neves,Sandra Vieira Gomesit via the “Carathéodory condition”. Lebesgue outer measure and Lebesgue measure on the real line. Lebesgue integrability of every Riemann integrable function. A set having no Lebesgue measure (“nonmeasurable” set of real numbers). Induced measure and integral on a subset. Lebesgue integral over [0, .) and improper integral of Riemann type.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 19:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表