找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: A Calculus for Factorial Arrangements; Sudhir Gupta,Rahul Mukerjee Book 1989 Springer-Verlag Berlin Heidelberg 1989 Mathematica.calculus.c

[复制链接]
查看: 55555|回复: 44
发表于 2025-3-21 17:44:41 | 显示全部楼层 |阅读模式
期刊全称A Calculus for Factorial Arrangements
影响因子2023Sudhir Gupta,Rahul Mukerjee
视频video
学科分类Lecture Notes in Statistics
图书封面Titlebook: A Calculus for Factorial Arrangements;  Sudhir Gupta,Rahul Mukerjee Book 1989 Springer-Verlag Berlin Heidelberg 1989 Mathematica.calculus.c
影响因子Factorial designs were introduced and popularized by Fisher (1935). Among the early authors, Yates (1937) considered both symmetric and asymmetric factorial designs. Bose and Kishen (1940) and Bose (1947) developed a mathematical theory for symmetric priIi‘t&-powered factorials while Nair and Roo (1941, 1942, 1948) introduced and explored balanced confounded designs for the asymmetric case. Since then, over the last four decades, there has been a rapid growth of research in factorial designs and a considerable interest is still continuing. Kurkjian and Zelen (1962, 1963) introduced a tensor calculus for factorial arrangements which, as pointed out by Federer (1980), represents a powerful statistical analytic tool in the context of factorial designs. Kurkjian and Zelen (1963) gave the analysis of block designs using the calculus and Zelen and Federer (1964) applied it to the analysis of designs with two-way elimination of heterogeneity. Zelen and Federer (1965) used the calculus for the analysis of designs having several classifications with unequal replications, no empty cells and with all the interactions present. Federer and Zelen (1966) considered applications of the calculus fo
Pindex Book 1989
The information of publication is updating

书目名称A Calculus for Factorial Arrangements影响因子(影响力)




书目名称A Calculus for Factorial Arrangements影响因子(影响力)学科排名




书目名称A Calculus for Factorial Arrangements网络公开度




书目名称A Calculus for Factorial Arrangements网络公开度学科排名




书目名称A Calculus for Factorial Arrangements被引频次




书目名称A Calculus for Factorial Arrangements被引频次学科排名




书目名称A Calculus for Factorial Arrangements年度引用




书目名称A Calculus for Factorial Arrangements年度引用学科排名




书目名称A Calculus for Factorial Arrangements读者反馈




书目名称A Calculus for Factorial Arrangements读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:07:26 | 显示全部楼层
https://doi.org/10.1007/978-3-030-11969-01 (1 ≤ . ≤ .). A typical selection of levels . = (.,.,..., .), 0 ≤; . ≤ ., − 1, 1 ≤ . ≤ ., will be termed the jth treatment combination and the effect due to this treatment combination will be denoted by τ(.,.,..., .).
发表于 2025-3-22 03:07:21 | 显示全部楼层
发表于 2025-3-22 08:09:37 | 显示全部楼层
发表于 2025-3-22 10:57:09 | 显示全部楼层
发表于 2025-3-22 14:35:19 | 显示全部楼层
https://doi.org/10.1007/978-3-642-37509-5characterization for OFS as in Theorem 4.2.1 intrinsically involves Kronecker products, it is also appropriate to consider methods of construction based on Kronecker or Kronecker- type products of varietal designs. Such methods also lead to a wide variety of designs with OFS and, if appropriately us
发表于 2025-3-22 20:34:20 | 显示全部楼层
发表于 2025-3-22 23:56:05 | 显示全部楼层
发表于 2025-3-23 05:08:02 | 显示全部楼层
Lecture Notes in Statisticshttp://image.papertrans.cn/a/image/140135.jpg
发表于 2025-3-23 08:05:13 | 显示全部楼层
A Calculus for Factorial Arrangements978-1-4419-8730-3Series ISSN 0930-0325 Series E-ISSN 2197-7186
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 01:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表