找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization; Stefan Rocktäschel Book 2020 Springer Fachmedien Wiesba

[复制链接]
查看: 11273|回复: 37
发表于 2025-3-21 18:11:36 | 显示全部楼层 |阅读模式
期刊全称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization
影响因子2023Stefan Rocktäschel
视频video
发行地址First algorithm for solving multiobjective mixed-integer convex optimization problems
学科分类BestMasters
图书封面Titlebook: A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization;  Stefan Rocktäschel Book 2020 Springer Fachmedien Wiesba
影响因子Stefan Rocktäschel introduces a branch-and-bound algorithm that determines a cover of the efficient set of multiobjective mixed-integer convex optimization problems. He examines particular steps of this algorithm in detail and enhances the basic algorithm with additional modifications that ensure a more precise cover of the efficient set. Finally, he gives numerical results on some test instances.
Pindex Book 2020
The information of publication is updating

书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization影响因子(影响力)




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization影响因子(影响力)学科排名




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization网络公开度




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization网络公开度学科排名




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization被引频次




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization被引频次学科排名




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization年度引用




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization年度引用学科排名




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization读者反馈




书目名称A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:19:35 | 显示全部楼层
Expectations in Human-Robot Interactionity location problem studied by Günlük, Lee, Weismantel [9], where integer variables are used to model the decision for a facility, whether it should be built or not. Additionally, there are continuous variables which state the percentage of the respective customers’ demands which is met by any give
发表于 2025-3-22 01:32:29 | 显示全部楼层
Expectations in Human-Robot Interaction multiobjective optimization problems. Based on this, we formulate the central optimization problem that we study throughout this book and introduce a relaxed optimization problem that we use in order to solve the central optimization problem.
发表于 2025-3-22 05:47:48 | 显示全部楼层
发表于 2025-3-22 11:53:27 | 显示全部楼层
发表于 2025-3-22 15:30:49 | 显示全部楼层
Lecture Notes in Networks and SystemsIn this chapter, we introduce a basic algorithm for computing a ’good’ cover of the efficient set of (MOMICP). The algorithm illustrates the basic procedure that we use. The idea of this Branch-and-Bound algorithm is to iteratively split the initial box . into smaller subboxes and derive lower and upper bounds for respective subproblems.
发表于 2025-3-22 21:08:13 | 显示全部楼层
https://doi.org/10.1007/978-3-319-94866-9In this chapter, we introduce modifications that enhance the basic Branch-and-Bound algorithm for (MOMICP), we introduced in Chapter 3. We follow different goals with these modifications. We would like to reduce the amount of computational time, the algorithm requires, as well as provide a ’better’ cover of the efficient set of (MOMICP).
发表于 2025-3-22 22:15:47 | 显示全部楼层
发表于 2025-3-23 01:29:42 | 显示全部楼层
Young-A Suh,Jung Hwan Kim,Man-Sung YimIn this Chapter, we discuss an extension of the proposed algorithm to the nonconvex case. Therefore, we introduce the concept of convex underestimators. As we have seen in Example 2.13, the assumption of convexity of . and . for (MOMICP) in Assumption 2.9 can be very restricting.
发表于 2025-3-23 06:41:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 07:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表