找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: A Birman-Schwinger Principle in Galactic Dynamics; Markus Kunze Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
查看: 41740|回复: 35
发表于 2025-3-21 16:21:31 | 显示全部楼层 |阅读模式
期刊全称A Birman-Schwinger Principle in Galactic Dynamics
影响因子2023Markus Kunze
视频video
发行地址Connects a mathematical principle used in quantum mechanics to the study of steady state solutions in galactic dynamics.Presents a novel result in great detail.Includes appendices that cover necessary
学科分类Progress in Mathematical Physics
图书封面Titlebook: A Birman-Schwinger Principle in Galactic Dynamics;  Markus Kunze Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive
影响因子This monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics.  The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$.  Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the “best constant” in the Antonov stability estimate is attained.  The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively.  Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory.  .A Birman-Schwinger Principle in Galactic Dynamics. will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and a
Pindex Book 2021
The information of publication is updating

书目名称A Birman-Schwinger Principle in Galactic Dynamics影响因子(影响力)




书目名称A Birman-Schwinger Principle in Galactic Dynamics影响因子(影响力)学科排名




书目名称A Birman-Schwinger Principle in Galactic Dynamics网络公开度




书目名称A Birman-Schwinger Principle in Galactic Dynamics网络公开度学科排名




书目名称A Birman-Schwinger Principle in Galactic Dynamics被引频次




书目名称A Birman-Schwinger Principle in Galactic Dynamics被引频次学科排名




书目名称A Birman-Schwinger Principle in Galactic Dynamics年度引用




书目名称A Birman-Schwinger Principle in Galactic Dynamics年度引用学科排名




书目名称A Birman-Schwinger Principle in Galactic Dynamics读者反馈




书目名称A Birman-Schwinger Principle in Galactic Dynamics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:58:29 | 显示全部楼层
Book 2021and operators, and some aspects of Kato-Rellich perturbation theory.  .A Birman-Schwinger Principle in Galactic Dynamics. will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and a
发表于 2025-3-22 00:48:46 | 显示全部楼层
1544-9998 ult in great detail.Includes appendices that cover necessaryThis monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics.  The opening chapters lay the framework f
发表于 2025-3-22 07:33:50 | 显示全部楼层
发表于 2025-3-22 11:38:07 | 显示全部楼层
发表于 2025-3-22 14:31:44 | 显示全部楼层
Progress in Mathematical Physicshttp://image.papertrans.cn/a/image/140062.jpg
发表于 2025-3-22 20:37:34 | 显示全部楼层
发表于 2025-3-22 23:57:51 | 显示全部楼层
https://doi.org/10.1007/978-3-030-75186-9Galactic Dynamics; Birman-Schwinger Principle; Antonov Stability Estimate; Steady State Solutions in Ga
发表于 2025-3-23 04:05:37 | 显示全部楼层
978-3-030-75188-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-23 09:24:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 18:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表