找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Wittrings; Manfred Knebusch,Manfred Kolster Book 1982 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1982 Algebra.Approximati

[复制链接]
查看: 6968|回复: 34
发表于 2025-3-21 17:46:29 | 显示全部楼层 |阅读模式
书目名称Wittrings
编辑Manfred Knebusch,Manfred Kolster
视频video
丛书名称Aspects of Mathematics
图书封面Titlebook: Wittrings;  Manfred Knebusch,Manfred Kolster Book 1982 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1982 Algebra.Approximati
出版日期Book 1982
关键词Algebra; Approximation; Excel; Framework; Generator; Grothendieck-Topologie; Impress; Lehrsatz; Primzahl; Ran
版次1
doihttps://doi.org/10.1007/978-3-322-84382-1
isbn_softcover978-3-528-08512-4
isbn_ebook978-3-322-84382-1Series ISSN 0179-2156
issn_series 0179-2156
copyrightFriedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1982
The information of publication is updating

书目名称Wittrings影响因子(影响力)




书目名称Wittrings影响因子(影响力)学科排名




书目名称Wittrings网络公开度




书目名称Wittrings网络公开度学科排名




书目名称Wittrings被引频次




书目名称Wittrings被引频次学科排名




书目名称Wittrings年度引用




书目名称Wittrings年度引用学科排名




书目名称Wittrings读者反馈




书目名称Wittrings读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:33:13 | 显示全部楼层
发表于 2025-3-22 03:28:48 | 显示全部楼层
发表于 2025-3-22 06:45:48 | 显示全部楼层
Basic facts about symmetric bilinear forms, and definition of the Witt ring,iled discussion the reader should consult [12], [49], [59], [41]. We will often restrict ourselves to fields with characteristic different from two. Remarks concerning peculiarities of the characteristic two case will be marked by an asterisk.
发表于 2025-3-22 12:13:41 | 显示全部楼层
The structure of Witt rings,f the group ring ℤ[Q(F)], where Q(F) denotes the group F*/F*. of square classes of the field F, we deduce the structure theorems purely ring-theoretically. Thus the results obtained by this way apply to a wider class of rings, which we call “abstract Witt rings”, and not only to Witt rings of symmet
发表于 2025-3-22 13:14:27 | 显示全部楼层
发表于 2025-3-22 19:27:30 | 显示全部楼层
The structure of Witt rings,ric bilinear forms over fields (cf. [36]). The main theorems about the structure of Witt rings of fields have been proved by Pfister [52], Leicht-Lorenz [43] and Harrison [32]. Most of the following can be found in a more general setting in [36].
发表于 2025-3-22 22:54:27 | 显示全部楼层
发表于 2025-3-23 04:05:56 | 显示全部楼层
发表于 2025-3-23 06:40:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 22:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表