找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Weighted Empirical Processes in Dynamic Nonlinear Models; Hira L. Koul Book 2002Latest edition Springer Science+Business Media New York 20

[复制链接]
楼主: Forbidding
发表于 2025-3-23 13:43:00 | 显示全部楼层
Hira L. Koulems, reduce costs and better understand customer needs. Industrial partners involved inManutelligence provide a clear overview of the project’s outcomes, and demonstrate how its technological solutions can be used to improve the design of product-service systems and the management of product-service
发表于 2025-3-23 14:46:30 | 显示全部楼层
on risk measures in the framework of insurance premiums are also considered. The numerous exercises contained in .Modern Actuarial Risk Theory., together with the hints for solving the more difficult ones and the numerical answers to many others, make the book useful as a textbook. Some important practical pa978-0-306-47603-7
发表于 2025-3-23 20:16:10 | 显示全部楼层
发表于 2025-3-24 01:12:44 | 显示全部楼层
Introduction, (W.E.P.) corresponding to the random variables (r.v.’s) ., ..., . and the non-random real weights ., ..., . is defined to be .The weights {.} need not be nonnegative.
发表于 2025-3-24 04:37:00 | 显示全部楼层
发表于 2025-3-24 06:53:33 | 显示全部楼层
Linear Rank and Signed Rank Statistics,Let {., .} be as in (2.2.23) and {.} be . × 1 real vectors. The rank and the absolute rank of the . residual for 1 ≤ . ≤ ., . ∈ ℝ., are defined, respectively, as .% MathType!End!2!1!Let . be a nondecreasing real valued function on [0,1] and define . for . ∈ ℝ., where
发表于 2025-3-24 12:05:24 | 显示全部楼层
Introduction, (W.E.P.) corresponding to the random variables (r.v.’s) ., ..., . and the non-random real weights ., ..., . is defined to be .The weights {.} need not be nonnegative.
发表于 2025-3-24 15:27:38 | 显示全部楼层
,Asymptotic Properties of W.E.P.’s,Let, for each . ≥ 1, ., …, . be independent r.v.’s taking values in [0,1] with respective d.f.’s ., …, . and ., …, . be real numbers. Define {fy(2.1.1)|15-1} Observe that . belongs to .[0,1] for each . and any triangular array {., 1 ≤ . ≤ .}, while . of (1.4.1) belongs to .(ℝ) for each . and any triangular array {., 1 ≤ . ≤ .}.
发表于 2025-3-24 20:48:06 | 显示全部楼层
发表于 2025-3-25 00:33:40 | 显示全部楼层
Linear Rank and Signed Rank Statistics,Let {., .} be as in (2.2.23) and {.} be . × 1 real vectors. The rank and the absolute rank of the . residual for 1 ≤ . ≤ ., . ∈ ℝ., are defined, respectively, as .% MathType!End!2!1!Let . be a nondecreasing real valued function on [0,1] and define . for . ∈ ℝ., where
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表