找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web and Big Data. APWeb-WAIM 2021 International Workshops; KGMA 2021, SemiBDMA Yunjun Gao,An Liu,Junying Chen Conference proceedings 2021

[复制链接]
楼主: Grant
发表于 2025-3-27 00:01:42 | 显示全部楼层
发表于 2025-3-27 02:08:13 | 显示全部楼层
发表于 2025-3-27 09:13:42 | 显示全部楼层
SMat-J: A Sparse Matrix-Based Join for SPARQL Query Processing statistical input from SM Storage. Thirdly, Query Executor module executes query in an efficient manner. Lastly, SMat-J evaluated by comparing with some well-known approaches like gStore and RDF3X on very large datasets (over 500 million triples). SMat-J is proved as significantly efficient and scalable.
发表于 2025-3-27 12:07:12 | 显示全部楼层
SMat-J: A Sparse Matrix-Based Join for SPARQL Query Processing statistical input from SM Storage. Thirdly, Query Executor module executes query in an efficient manner. Lastly, SMat-J evaluated by comparing with some well-known approaches like gStore and RDF3X on very large datasets (over 500 million triples). SMat-J is proved as significantly efficient and scalable.
发表于 2025-3-27 15:05:25 | 显示全部楼层
发表于 2025-3-27 20:10:05 | 显示全部楼层
Product Clustering Analysis Based on the Retail Product Knowledge Graphn objective is to unveil hidden interactions of products by including implicit product attributes. These hidden interactions bring insights to downstream operations such as demand forecasting, production planning, assortment optimization, etc.
发表于 2025-3-27 22:41:40 | 显示全部楼层
发表于 2025-3-28 04:43:47 | 显示全部楼层
A Distributed Engine for Multi-query Processing Based on Predicates with Sparks SPARQL queries with translating them into Spark SQL. We utilize the predicate information as the feature of the query and cluster the multiple queries which share more common features into groups..We conduct experiments with synthetic datasets, compared with the result without MQO processing, we could show the effectiveness of our approach.
发表于 2025-3-28 09:54:45 | 显示全部楼层
Evangelia Tsoukanara,Georgia Koloniari,Evaggelia Pitoura
发表于 2025-3-28 11:18:59 | 显示全部楼层
Web and Big Data. APWeb-WAIM 2021 International WorkshopsKGMA 2021, SemiBDMA
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 00:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表