找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web and Big Data; 5th International Jo Leong Hou U,Marc Spaniol,Junying Chen Conference proceedings 2021 Springer Nature Switzerland AG 202

[复制链接]
楼主: estrange
发表于 2025-3-25 03:44:45 | 显示全部楼层
An Efficient Bucket Logging for Persistent Memory). BKL uses the per-transaction log structure (i.e., bucket) to store logs internally and ensures efficient writing of metadata and logs. Benefit from multi version concurrency control, BKL only records small fixed-size log entries to implement fast logging and crash recovery. Moreover, we optimize
发表于 2025-3-25 07:29:00 | 显示全部楼层
发表于 2025-3-25 13:51:04 | 显示全部楼层
Data Poisoning Attacks on Crowdsourcing Learningl-world datasets demonstrates that our attack can significantly decrease the test accuracy of trained classifiers. We verified that the labels generated with our strategy can be transferred to attack a broad family of crowdsourcing learning models in a black-box setting, indicating its applicability
发表于 2025-3-25 18:50:00 | 显示全部楼层
发表于 2025-3-25 20:18:01 | 显示全部楼层
发表于 2025-3-26 02:31:31 | 显示全部楼层
ties as the BSW scheme but does not rely on collision resistant hash functions. Instead, we use a target collision resistant hash function, which is a strictly weaker primitive than a collision resistant hash function. Our scheme is, in terms of the signature size and the computational cost, as efficient as the BSW scheme.
发表于 2025-3-26 08:16:10 | 显示全部楼层
发表于 2025-3-26 11:13:25 | 显示全部楼层
发表于 2025-3-26 12:47:26 | 显示全部楼层
Guanghua Li,Qiyan Li,Jingqiao Liu,Yuanyuan Zhu,Ming Zhongatabase based provenance model, ., can be easily mapped to the FLOQ model; and iv) We show by examples that FLOQ is expressive enough to formulate common provenance queries, including all the provenance challenge queries proposed in the provenance challenge series.
发表于 2025-3-26 20:07:41 | 显示全部楼层
Gang Wang,Qi Peng,Yanfeng Zhang,Mingyang Zhangt publication of the PROV standard for provenance on the Web, which the two authors actively help shape in the Provenance Working Group at the World Wide Web Consortium, this Synthesis lecture is a hands-on introduction to PROV aimed at Web and linked data professionals. By means of recipes, illustr
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 11:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表