找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[复制链接]
楼主: amateur
发表于 2025-3-28 17:37:53 | 显示全部楼层
发表于 2025-3-28 21:29:40 | 显示全部楼层
Improving Zero-Shot Information Retrieval with Mutual Validation of Generative and Pseudo-Relevance zing various prompting strategies. The mutual validation process incorporates a comprehensive scoring mechanism that considers both consistency and relevance dimensions, facilitating alignment between GRF and PRF while retaining query-relevant information. Lastly, our fine-grained dual-filtering app
发表于 2025-3-29 01:30:21 | 显示全部楼层
发表于 2025-3-29 06:23:44 | 显示全部楼层
Entity Semantic Feature Fusion Network for Remote Sensing Image-Text Retrievalntic in the text into our textual feature extractor, so that it can have a good entity perception of remote sensing text. We designed a Text Phrase Enhancement module (TPE) to further extract and enhance entity semantic and alignment visual information in text. In addition, ESFN’s experimental resul
发表于 2025-3-29 07:21:06 | 显示全部楼层
发表于 2025-3-29 13:15:15 | 显示全部楼层
Semantic Preservation and Hash Fusion Network for Unsupervised Cross-Modal Retrievalonstruct a joint similarity matrix to generate high-quality unified binary hash codes by leveraging the interaction among continuous codes from different modalities. Experimental results on multiple datasets show that our method significantly outperforms existing state-of-the-art approaches in cross
发表于 2025-3-29 18:07:13 | 显示全部楼层
发表于 2025-3-29 20:38:13 | 显示全部楼层
ECHO: Adaptive Correction for Subgraph-Wise Sampling with Lightweight Hyperparameter Searche, ECHO adaptively incorporates neighbor sampling epochs into the training process as correction according to the training loss. Our theoretical analysis and extensive experiments demonstrate that ECHO achieves fast convergence with high accuracy. Specifically, ECHO achieves up to 3.5. training time
发表于 2025-3-30 03:27:03 | 显示全部楼层
发表于 2025-3-30 06:16:37 | 显示全部楼层
A Parallel and Distributed Data Management Approach for MEC Using the Improved Parameterized Deep Q-s data management and analysis across multiple edge servers and it addresses the dual challenges of parallel and distributed data management by ensuring data consistency and availability across distributed nodes, while optimizing computational resources to reduce latency and energy consumption. Expe
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 09:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表