找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[复制链接]
楼主: 使作呕
发表于 2025-3-23 10:31:13 | 显示全部楼层
发表于 2025-3-23 14:49:57 | 显示全部楼层
发表于 2025-3-23 21:49:16 | 显示全部楼层
Product Anomaly Detection on Heterogeneous Graphs with Sparse Labelss, we propose a novel approach for product anomaly detection on heterogeneous graphs. Our approach consists of three key modules: 1) An imbalanced sample strategy that effectively handles class imbalance and high heterogeneity; 2) A label propagation module that tackles the issue of label sparsity;
发表于 2025-3-23 22:36:08 | 显示全部楼层
Product Anomaly Detection on Heterogeneous Graphs with Sparse Labelss, we propose a novel approach for product anomaly detection on heterogeneous graphs. Our approach consists of three key modules: 1) An imbalanced sample strategy that effectively handles class imbalance and high heterogeneity; 2) A label propagation module that tackles the issue of label sparsity;
发表于 2025-3-24 04:36:47 | 显示全部楼层
Generic and Scalable Detection of Risky Transactions Using Density Flows: Applications to Financial d reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms.
发表于 2025-3-24 09:07:11 | 显示全部楼层
Generic and Scalable Detection of Risky Transactions Using Density Flows: Applications to Financial d reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms.
发表于 2025-3-24 11:59:52 | 显示全部楼层
Attributed Heterogeneous Graph Embedding with Meta-graph Attentionlly, the node embeddings under different meta-graphs are fused by considering the importance of meta-graphs. Experimental results on three real datasets show the proposed AHEMA model outperforms the baselines on node classification and node clustering tasks.
发表于 2025-3-24 16:37:42 | 显示全部楼层
发表于 2025-3-24 22:21:22 | 显示全部楼层
Automated Multi-scale Contrastive Learning with Sample-Awareness for Graph Classificationopology of the input graph and refine neighborhood information. Extensive experiments on eight benchmark datasets demonstrate that our proposed SaMGCL achieves superior graph classification performance compared to the current state-of-the-art approaches.
发表于 2025-3-25 02:54:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 20:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表