找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: WALCOM: Algorithms and Computation; Third International Sandip Das,Ryuhei Uehara Conference proceedings 2009 Springer-Verlag Berlin Heidel

[复制链接]
楼主: ossicles
发表于 2025-3-25 06:45:28 | 显示全部楼层
发表于 2025-3-25 07:38:13 | 显示全部楼层
发表于 2025-3-25 15:36:08 | 显示全部楼层
发表于 2025-3-25 18:26:32 | 显示全部楼层
发表于 2025-3-25 20:48:15 | 显示全部楼层
发表于 2025-3-26 03:44:14 | 显示全部楼层
Maximum Neighbour Voronoi Games . points with the target of maximizing total Voronoi area of its sites in the Voronoi diagram of 2. points. In this paper we address this problem by introducing Voronoi games . where the basic objective of an optimal playing strategy is to acquire more neighbors than the opponent. We consider sever
发表于 2025-3-26 05:39:52 | 显示全部楼层
发表于 2025-3-26 12:01:48 | 显示全部楼层
On Exact Solutions to the Euclidean Bottleneck Steiner Tree Problemt most . Steiner points such that the length of the longest edge in the tree is minimized. This problem is known to be NP-hard even to approximate within ratio .. We focus on finding exact solutions to the problem for a small constant .. Based on geometric properties of optimal location of Steiner p
发表于 2025-3-26 14:48:00 | 显示全部楼层
Colinear Coloring on Graphsrough which it was studied, we introduce the colinear coloring on graphs. We provide an upper bound for the chromatic number .(.), for any graph ., and show that . can be colinearly colored in polynomial time by proposing a simple algorithm. The colinear coloring of a graph . is a vertex coloring su
发表于 2025-3-26 20:30:32 | 显示全部楼层
Colinear Coloring on Graphsrough which it was studied, we introduce the colinear coloring on graphs. We provide an upper bound for the chromatic number .(.), for any graph ., and show that . can be colinearly colored in polynomial time by proposing a simple algorithm. The colinear coloring of a graph . is a vertex coloring su
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 20:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表