JOLT 发表于 2025-3-21 18:36:08
书目名称Machine Learning Meets Medical Imaging影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0620401<br><br> <br><br>书目名称Machine Learning Meets Medical Imaging读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0620401<br><br> <br><br>SEEK 发表于 2025-3-21 20:39:46
http://reply.papertrans.cn/63/6205/620401/620401_2.png表示问 发表于 2025-3-22 01:57:20
http://reply.papertrans.cn/63/6205/620401/620401_3.png舰旗 发表于 2025-3-22 05:45:53
Modelling Non-stationary and Non-separable Spatio-Temporal Changes in Neurodegeneration via Gaussianspatio-temporal modelling of image time series relies on the assumption of stationarity of the local spatial correlation, and on the separability between spatial and temporal processes. These assumptions are often made in order to lead to computationally tractable approaches to longitudinal modellinHyperplasia 发表于 2025-3-22 08:58:18
http://reply.papertrans.cn/63/6205/620401/620401_5.png闪光东本 发表于 2025-3-22 15:55:51
http://reply.papertrans.cn/63/6205/620401/620401_6.pngcharacteristic 发表于 2025-3-22 21:08:04
http://reply.papertrans.cn/63/6205/620401/620401_7.png起皱纹 发表于 2025-3-22 22:01:07
http://reply.papertrans.cn/63/6205/620401/620401_8.pngSUGAR 发表于 2025-3-23 03:21:34
Feature-Space Transformation Improves Supervised Segmentation Across Scannersfeature distribution. However, if training and test images are acquired with different scanners or scanning parameters, their feature distributions can be very different, which can hurt the performance of such techniques..We propose a feature-space-transformation method to overcome these differencesarchenemy 发表于 2025-3-23 09:15:38
http://reply.papertrans.cn/63/6205/620401/620401_10.png