多产鱼 发表于 2025-3-23 13:20:49
Werner Thole,Davina HölichSemantik eingesetzt werden können, sind zweidimensionale Programmiersprachen . Schließlich lassen sich, wie in gezeigt, einfache Graph-Grammatiken angeben, die die Menge aller Programmgraphen zu wohlstrukturierten Programmen bzw. wohlstrukturierten Programmen mit Escape-Mechanismus (vgB-cell 发表于 2025-3-23 17:40:22
Anna Brakerstellungen vgl. , ). Wir folgen hier in etwa der Darstellung in . Es sei hier noch auf eine weitere Implementierung in hingewiesen, die das in III.3 angegebene Syntaxanalyse-Verfahren für Graphen realisiert. Im letzten Abschnitt dieses Kapitels werden die zukünftigen Implementi针叶类的树 发表于 2025-3-23 19:53:31
http://reply.papertrans.cn/55/5450/544969/544969_13.pnggoodwill 发表于 2025-3-24 01:02:09
http://reply.papertrans.cn/55/5450/544969/544969_14.png具体 发表于 2025-3-24 04:19:50
Annette Frankee definition - the graphs are mixed (they may have both directed and undirected edges), may have multiple edges, loops, and semi-edges. We show that a strong P/NP-co dichotomy holds true in the sense that for each such fixed target graph ., the .-. problem is either polynomial time solvable for arbi肌肉 发表于 2025-3-24 09:45:42
http://reply.papertrans.cn/55/5450/544969/544969_16.png银版照相 发表于 2025-3-24 12:58:27
http://reply.papertrans.cn/55/5450/544969/544969_17.pngfigurine 发表于 2025-3-24 17:29:35
Falko Peschelar has an associated placement component. By an extension of the parsing process we can compute a placement of the vertices of each generated graph, which is consistent with the associated placement component, and is area minimal. For connected graphs of bounded degree this can be done in polynomial广告 发表于 2025-3-24 20:59:23
Ulrich Trautwein,Oliver Lüdtkel the search numbers above. More precisely, for any graph ., .(.) = .(.) = .(.) ≤ .(.) ≤ .(.) = .(.) ≤ .(.) = .(.). The first two inequalities can be strict. Motivated by the fact that connected graph searching and monotone internal graph searching are both minor closed ., we provide a complete char臆断 发表于 2025-3-24 23:58:52
Marius Harringing the computation time at each node. For the . problem on UDGs, we present two local distributed algorithms with different tradeoffs between their approximation ratio and locality. The first algorithm has ratio 128 and locality 22, whereas the second algorithm has ratio 10 and locality 180.