障碍物 发表于 2025-3-25 05:20:34

Werte schaffen durch M&A-TransaktionenThe purpose of this chapter is to establish the main result of this book, i.e., we give a Riemann-Roch-Grothendieck formula for the class . (.,.). When ., this result was already established in Theorem 5.2.1 using elliptic superconnections. The introduction in . of hypoelliptic superconnections did not allow us to eliminate this assumption.

离开就切除 发表于 2025-3-25 09:27:31

The Riemannian adiabatic limit,The purpose of this chapter is to study the adiabatic limit of the Levi-Civita connection on a fibred manifold. This study was initiated in , and continued in Bismut-Cheeger , Berline-Getzler-Vergne , Berthomieu-Bismut and Bismut .

荧光 发表于 2025-3-25 15:17:51

http://reply.papertrans.cn/44/4308/430772/430772_23.png

分发 发表于 2025-3-25 17:11:23

http://reply.papertrans.cn/44/4308/430772/430772_24.png

ALT 发表于 2025-3-25 20:20:36

http://reply.papertrans.cn/44/4308/430772/430772_25.png

PURG 发表于 2025-3-26 01:21:44

The hypoelliptic superconnections,The purpose of this chapter is to extend the results of to the case where .. is not supposed to be closed. More precisely, let . :. be the total space of ., and let . :. be the obvious projection with fibre ..

使出神 发表于 2025-3-26 07:52:05

http://reply.papertrans.cn/44/4308/430772/430772_27.png

苦涩 发表于 2025-3-26 09:42:53

http://reply.papertrans.cn/44/4308/430772/430772_28.png

敏捷 发表于 2025-3-26 14:19:55

The hypoelliptic superconnection forms when ,,The purpose of this chapter is to study the hypoelliptic superconnection forms of . in the case where .. In particular, we show that, as in the elliptic case, the form . can be explicitly computed.

没有准备 发表于 2025-3-26 19:20:57

http://reply.papertrans.cn/44/4308/430772/430772_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore