摇晃 发表于 2025-3-23 10:25:16

http://reply.papertrans.cn/44/4308/430772/430772_11.png

nonradioactive 发表于 2025-3-23 17:32:22

http://reply.papertrans.cn/44/4308/430772/430772_12.png

monopoly 发表于 2025-3-23 20:45:25

Kleine Kulturgeschichte der Werte,The purpose of this chapter is to study the adiabatic limit of the Levi-Civita connection on a fibred manifold. This study was initiated in , and continued in Bismut-Cheeger , Berline-Getzler-Vergne , Berthomieu-Bismut and Bismut .

ANN 发表于 2025-3-23 23:41:34

http://reply.papertrans.cn/44/4308/430772/430772_14.png

tendinitis 发表于 2025-3-24 03:06:27

http://reply.papertrans.cn/44/4308/430772/430772_15.png

explicit 发表于 2025-3-24 06:56:33

https://doi.org/10.1007/978-3-658-23299-3The purpose of this chapter is to specialize the results of . to the case where .. We compute . explicitly, and we establish Theorem 0.1.1 in this special case. In ., we will get rid of any assumption on ...

insightful 发表于 2025-3-24 11:20:30

https://doi.org/10.1007/978-3-662-59194-9The purpose of this chapter is to extend the results of to the case where .. is not supposed to be closed. More precisely, let . :. be the total space of ., and let . :. be the obvious projection with fibre ..

Immunization 发表于 2025-3-24 16:53:37

https://doi.org/10.1007/978-3-658-14873-7In this chapter, we construct hypoelliptic superconnection forms . that are associated with the hypoelliptic superconnections of Section 6, and we prove that their class in . (.,.) does not depend on ., and coincides with the class of the elliptic superconnection forms ..

AVERT 发表于 2025-3-24 21:25:28

http://reply.papertrans.cn/44/4308/430772/430772_19.png

六边形 发表于 2025-3-25 02:15:55

http://reply.papertrans.cn/44/4308/430772/430772_20.png
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore