Helmet 发表于 2025-3-21 19:03:05

书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0430772<br><br>        <br><br>书目名称Hypoelliptic Laplacian and Bott–Chern Cohomology读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0430772<br><br>        <br><br>

Concrete 发表于 2025-3-21 21:42:07

http://reply.papertrans.cn/44/4308/430772/430772_2.png

指派 发表于 2025-3-22 03:13:02

Hypoelliptic Laplacian and Bott–Chern Cohomology978-3-319-00128-9Series ISSN 0743-1643 Series E-ISSN 2296-505X

他日关税重重 发表于 2025-3-22 06:19:13

http://reply.papertrans.cn/44/4308/430772/430772_4.png

CLEAR 发表于 2025-3-22 09:50:39

http://reply.papertrans.cn/44/4308/430772/430772_5.png

尊重 发表于 2025-3-22 16:39:53

Schlussbemerkung: kritisches Vor-Denken,05, T06, T10]. He asked me if using analysis, it was possible to prove a Riemann-Roch- Grothendieck theorem in Bott-Chern cohomology for proper holomorphic submersions, if the source manifold is equipped with a Kähler form that is . closed, and if the direct image is locally free. His question was inspired by results of .

ascend 发表于 2025-3-22 17:32:07

https://doi.org/10.1007/978-3-476-05876-8. on .. The purpose of this chapter is to study the adiabatic limit of the holomorphic Hermitian connections on . associated with a family of Hermitian metrics .. The adiabatic limit of two other connections on ... that were defined in are studied as well.

消散 发表于 2025-3-22 21:41:55

http://reply.papertrans.cn/44/4308/430772/430772_8.png

常到 发表于 2025-3-23 04:04:37

http://reply.papertrans.cn/44/4308/430772/430772_9.png

善辩 发表于 2025-3-23 07:37:48

The holomorphic adiabatic limit,. on .. The purpose of this chapter is to study the adiabatic limit of the holomorphic Hermitian connections on . associated with a family of Hermitian metrics .. The adiabatic limit of two other connections on ... that were defined in are studied as well.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore