necrosis 发表于 2025-3-21 19:53:50

书目名称Geometry of Foliations影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383807<br><br>        <br><br>书目名称Geometry of Foliations读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383807<br><br>        <br><br>

贸易 发表于 2025-3-21 22:41:11

978-3-0348-9825-6Springer Basel AG 1997

不爱防注射 发表于 2025-3-22 04:06:15

Geometry of Foliations978-3-0348-8914-8Series ISSN 1017-0480 Series E-ISSN 2296-4886

CLAY 发表于 2025-3-22 07:23:58

Zusammengefaßte MetaphorisierungenThe simplest examples of foliations of codimension one are the level surfaces of a function. → ℝ with no critical points. This is of course only possible for a noncompact manifold .. The one-form ω = . is thus assumed nonsingular, i.e. ω. ≠ O for all . ∈..

artifice 发表于 2025-3-22 12:25:35

,Einführung in die Lineare Algebra,A Riemannian metric.on the normal bundle.of a foliation . is holonomy invariant, if..Here we have by definition for...A Riemannian foliation is a foliation . with a holonomy invariant transversal metric . The study of these foliations was initiated by Reinhart in 1959 .

formula 发表于 2025-3-22 16:35:01

Grenzwerte und Stetigkeit von Funktionen,In this chapter we discuss the case of tangentially oriented 1-dimensional foliations, in which many of the previously discussed concepts take a particularly simple form.

formula 发表于 2025-3-22 19:39:47

https://doi.org/10.1007/978-3-8348-9223-2Throughout this chapter . denotes a transversally oriented Riemannian foliation on a closed oriented manifold .. We discuss Hodge theory and a duality theorem for the cohomology of basic forms .

不整齐 发表于 2025-3-23 00:08:01

,Einführung in die Lineare Algebra,A Lie foliation is a foliation whose transversal structure is modeled on a Lie group. These were initially studied by Fedida and Molino .

outset 发表于 2025-3-23 04:38:35

http://reply.papertrans.cn/39/3839/383807/383807_9.png

Amplify 发表于 2025-3-23 07:27:01

https://doi.org/10.1007/978-3-322-92891-7We begin this chapter with the description of the concept of the graph of a foliation, and then describe Connes’ view of foliations in the context of noncommutative spaces.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential