松紧带 发表于 2025-3-23 12:38:30

http://reply.papertrans.cn/39/3839/383807/383807_11.png

EXTOL 发表于 2025-3-23 13:51:25

http://reply.papertrans.cn/39/3839/383807/383807_12.png

Living-Will 发表于 2025-3-23 19:26:47

http://reply.papertrans.cn/39/3839/383807/383807_13.png

EXALT 发表于 2025-3-23 22:42:16

Hodge Theory for the Transversal Laplacian,Throughout this chapter . denotes a transversally oriented Riemannian foliation on a closed oriented manifold .. We discuss Hodge theory and a duality theorem for the cohomology of basic forms .

记成蚂蚁 发表于 2025-3-24 06:18:38

http://reply.papertrans.cn/39/3839/383807/383807_15.png

图表证明 发表于 2025-3-24 09:32:55

http://reply.papertrans.cn/39/3839/383807/383807_16.png

DUCE 发表于 2025-3-24 11:51:35

http://reply.papertrans.cn/39/3839/383807/383807_17.png

Thyroiditis 发表于 2025-3-24 15:28:01

https://doi.org/10.1007/978-3-663-14165-5of .. The inverse images of points in the target space form a family of closed submanifolds of ., the leaves of the foliation . on . defined by . All these submanifolds have the same dimension .. If . denotes the dimension of ., and . the dimension of ., then . = . A particularly simple situation is

愤世嫉俗者 发表于 2025-3-24 20:19:58

http://reply.papertrans.cn/39/3839/383807/383807_19.png

sphincter 发表于 2025-3-24 23:57:57

http://reply.papertrans.cn/39/3839/383807/383807_20.png
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential