GRIPE 发表于 2025-3-25 03:54:46

http://reply.papertrans.cn/39/3839/383807/383807_21.png

boisterous 发表于 2025-3-25 08:14:43

https://doi.org/10.1007/978-3-322-93587-8 observations. The first is that the canonical lift.of a Riemannian foliation . to the bundle. of orthonormal frames of .is a transversally parallelizable Riemannian foliation. The canonical lift. on.is a foliation of the same dimension as . on ., and invariant under the action of the orthogonal str

cardiopulmonary 发表于 2025-3-25 14:07:17

https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.

谷类 发表于 2025-3-25 17:49:54

http://reply.papertrans.cn/39/3839/383807/383807_24.png

注入 发表于 2025-3-25 22:41:02

http://reply.papertrans.cn/39/3839/383807/383807_25.png

乏味 发表于 2025-3-26 00:58:06

https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.

工作 发表于 2025-3-26 07:43:58

http://reply.papertrans.cn/39/3839/383807/383807_27.png

Curmudgeon 发表于 2025-3-26 11:50:05

Cohomology Vanishing and Tautness,d on the positivity of certain curvature expressions. The Weitzenböck formula for the transversal Laplacian Δ. has, aside from the usual terms, correction terms involving the mean curvature, which interfere with the usual arguments leading to vanishing theorems.

Calibrate 发表于 2025-3-26 12:45:54

http://reply.papertrans.cn/39/3839/383807/383807_29.png

削减 发表于 2025-3-26 16:59:40

http://reply.papertrans.cn/39/3839/383807/383807_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential