Harrison 发表于 2025-3-21 17:25:45
书目名称Generalized Curvatures影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0382195<br><br> <br><br>书目名称Generalized Curvatures读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0382195<br><br> <br><br>胰脏 发表于 2025-3-21 22:18:18
http://reply.papertrans.cn/39/3822/382195/382195_2.png鸽子 发表于 2025-3-22 02:18:01
http://reply.papertrans.cn/39/3822/382195/382195_3.pngmastoid-bone 发表于 2025-3-22 06:10:23
http://reply.papertrans.cn/39/3822/382195/382195_4.pngWordlist 发表于 2025-3-22 12:24:14
Riemannian Submanifoldsect generalization in any dimension and codimension of curves and surfaces in E3. Their extrinsic curvatures generalize the Gauss and mean curvatures of surfaces. We review (without proof) some fundamental notions on the subject. Classical books on Riemannian submanifolds are .AROMA 发表于 2025-3-22 13:12:29
http://reply.papertrans.cn/39/3822/382195/382195_6.pngAROMA 发表于 2025-3-22 19:55:01
http://reply.papertrans.cn/39/3822/382195/382195_7.png傲慢人 发表于 2025-3-23 01:11:11
The Steiner Formula for Convex Subsetshat the convexity of .implies that this volume is polynomial in ε, the coefficients (Φ.(.),0.) depending on the geometry of .. Up to a constant, these coefficients (called the . of Minkowski) are the valuations, which appear in Definition 23 and Theorem 28 of Hadwiger. Moreover, these coefficien提升 发表于 2025-3-23 05:00:54
http://reply.papertrans.cn/39/3822/382195/382195_9.pngMortar 发表于 2025-3-23 05:35:39
Motivation: Curvesese invariants can be done. Our goal is to investigate a framework in which a geometric theory of both smooth and discrete objects is simultaneously possible. To motivate this work, we begin with two simple examples: the length and curvature of a curve.