trigger 发表于 2025-3-30 09:38:33

http://reply.papertrans.cn/39/3822/382195/382195_51.png

Conduit 发表于 2025-3-30 13:04:18

http://reply.papertrans.cn/39/3822/382195/382195_52.png

RALES 发表于 2025-3-30 16:43:28

Oriol T. Valls,Zlatko Tesanovicect generalization in any dimension and codimension of curves and surfaces in E3. Their extrinsic curvatures generalize the Gauss and mean curvatures of surfaces. We review (without proof) some fundamental notions on the subject. Classical books on Riemannian submanifolds are .

Petechiae 发表于 2025-3-30 22:18:05

E. Krotscheck,J. L. Epstein,M. Saarelart introduction to this subject. We end this chapter with important theorems used in the approximation and convergence results proved in the succeeding parts of the book. A nice introduction to this subject can be found in .

Ganglion-Cyst 发表于 2025-3-31 02:29:14

http://reply.papertrans.cn/39/3822/382195/382195_55.png

murmur 发表于 2025-3-31 06:25:26

M. A. Rao,D. A. Rao,K. R. D. Royhat the convexity of .implies that this volume is polynomial in ε, the coefficients (Φ.(.),0.) depending on the geometry of .. Up to a constant, these coefficients (called the . of Minkowski) are the valuations, which appear in Definition 23 and Theorem 28 of Hadwiger. Moreover, these coefficien
页: 1 2 3 4 5 [6]
查看完整版本: Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni