结构 发表于 2025-3-25 05:42:33

Stefan M. Duma Ph.D.,Steven Rowson Ph.D. a circle is geometric for . but not for ., while the property of being a conic or a straight line is geometric for both . and .. This point of view may be generalized to any subset . of any vector space . endowed with a group . acting on it..In this book, we only consider the group of rigid motions

FLINT 发表于 2025-3-25 10:16:28

M. A. Rao,D. A. Rao,K. R. D. Royevaluation of these curvatures cannot be done by differentiations of a parametrization of the boundary, because of the lack of differentiability. We shall directly evaluate them for convex polyhedra. All these techniques will be generalized in the next chapters to objects which are not convex, but w

忍受 发表于 2025-3-25 15:37:34

https://doi.org/10.1007/978-3-540-73792-6Gaussian curvature; Riemannian geometry; Riemannian manifold; computational geometry; computer graphics;

疏远天际 发表于 2025-3-25 17:53:13

978-3-642-09300-5Springer-Verlag Berlin Heidelberg 2008

刺耳 发表于 2025-3-25 20:58:59

http://reply.papertrans.cn/39/3822/382195/382195_25.png

Restenosis 发表于 2025-3-26 03:43:56

http://reply.papertrans.cn/39/3822/382195/382195_26.png

Curmudgeon 发表于 2025-3-26 07:16:29

http://reply.papertrans.cn/39/3822/382195/382195_27.png

visceral-fat 发表于 2025-3-26 09:02:50

http://reply.papertrans.cn/39/3822/382195/382195_28.png

expire 发表于 2025-3-26 16:28:13

http://reply.papertrans.cn/39/3822/382195/382195_29.png

尽责 发表于 2025-3-26 17:43:41

http://reply.papertrans.cn/39/3822/382195/382195_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni