probiotic 发表于 2025-3-21 16:44:16

书目名称Diophantine Approximation影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0280530<br><br>        <br><br>书目名称Diophantine Approximation读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0280530<br><br>        <br><br>

Flat-Feet 发表于 2025-3-21 20:56:34

http://reply.papertrans.cn/29/2806/280530/280530_2.png

是剥皮 发表于 2025-3-22 04:08:32

Hans Peter Schlickewei,Klaus Schmidt,Robert F. TicCurrent information on important branches of diophantine approximation from leading experts in the field.Diverse methods are presented.The influence of diophantine approximation in other fields, e.g.

放肆的我 发表于 2025-3-22 07:40:51

Developments in Mathematicshttp://image.papertrans.cn/e/image/280530.jpg

缺陷 发表于 2025-3-22 10:04:31

Introduction: Urban Developmentied since 1957, beginning with Danicic [.]. Given an integer . ≥ 2. we seek a number . having the following property, for every ∈ > 0 and every pair α = (α., ... α.), β = (β.,..., β.) in ℝ.: . > C., 1 ≤ . ≤ .

蹒跚 发表于 2025-3-22 13:03:46

Introduction: Urban Developmentsearch paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.

蹒跚 发表于 2025-3-22 17:11:19

http://reply.papertrans.cn/29/2806/280530/280530_7.png

财主 发表于 2025-3-23 00:31:50

Adil Mohammed Khan,Ishrat Islam L.-discrepancy . where for every . = (y.,..., . .) ∈ . ., the local discrepancy . is given by . Here . is a rectangular box of volume vol . y1... . ., and #(.) denotes the number of points of a set ., counted with multiplicity.

MIR 发表于 2025-3-23 05:08:07

Introduction: Regional Resources 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio

我邪恶 发表于 2025-3-23 07:12:47

http://reply.papertrans.cn/29/2806/280530/280530_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver