流出 发表于 2025-3-25 03:55:43
Robert Fletcher,Marie-Josée FortinThe diagonal case of the Nagell-Ljunggren equation is . and . an odd prime. The only known nontrivial solution is . and it is conjectured to be also the only such solution. However, it is not even proved that (1) has only finitely many solution.parallelism 发表于 2025-3-25 08:00:07
http://reply.papertrans.cn/29/2806/280530/280530_22.pngconcise 发表于 2025-3-25 13:40:15
Spatial Econometric Interaction ModellingUne inégalité de Łojasiewicz minore la valeur |f(.)| d’une fonction analytique . : ℝ.. ℝ par une puissance de la distance de . à l’ensemble des zéros de . Nous nous intéressons ici au cas arithmétique où . est un polynôme à coefficients entiers.Graves’-disease 发表于 2025-3-25 18:45:50
http://reply.papertrans.cn/29/2806/280530/280530_24.pngDeceit 发表于 2025-3-25 21:09:07
Metric Discrepancy Results for Sequences {nkx} and Diophantine Equations,Let (. .) be an increasing sequence of positive integers. For 0 ≤ . ≤ 1, setNEG 发表于 2025-3-26 03:20:47
http://reply.papertrans.cn/29/2806/280530/280530_26.pngnitric-oxide 发表于 2025-3-26 07:01:00
On the Diophantine Equation ,,, = ,,, with , (,)=0,Let . denote an algebraically closed field of characteristic 0, and let A.,..., A., G.,..., ... ∈ K[.] and . be a sequence of polynomials defined by the . th order linear recurring relation . Furthermore, let P(.) ∈ K[.], deg . ≥ 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equationFibrinogen 发表于 2025-3-26 11:00:21
,Approximants de Padé des ,-Polylogarithmes,Considérons la série . qui converge pour tout complexe |q|. 1 et tout entier . 1. La notation ζ. est justifiée par le fait que cette fonction est un .-analogue de la fonction zêta de Riemann ζ . au sens suivant (voir , ou [.]),GILD 发表于 2025-3-26 14:59:22
Class Number Conditions for the Diagonal Case of the Equation of Nagell and Ljunggren,The diagonal case of the Nagell-Ljunggren equation is . and . an odd prime. The only known nontrivial solution is . and it is conjectured to be also the only such solution. However, it is not even proved that (1) has only finitely many solution.无辜 发表于 2025-3-26 16:48:02
Construction of Approximations to Zeta-Values,Polylogarithmic functions are defined by series . Due to equalities L.;(1) = ζ. 2, they play an important role in study of arithmetic properties of Riemann zeta-function ζ. at integer points.