accessory 发表于 2025-3-23 12:52:54

http://reply.papertrans.cn/29/2806/280530/280530_11.png

Isthmus 发表于 2025-3-23 14:25:14

Robert Fletcher,Marie-Josée Fortinform . with . . ∈ ℤ, where ., . . > 0 with given polynomials . . and nonzero numbers α. (thus for each . . .). is a linear recurrence sequence, see also ). The general assumption of is that α. is a root of unity and that . . ≠ 0 for . > 0 (. . may be zero), . 1, ..., . Furthe

BIBLE 发表于 2025-3-23 20:06:42

Robert Fletcher,Marie-Josée Fortinr . and real number ., it is well known that the number . of points α in . having degree . over ℚ and satisfying . is finite. This is the one-dimensional case of Northcott’s Theorem [.] (see also ). The systematic study of the counting function ., and that of related functions in higher

NATAL 发表于 2025-3-24 01:51:59

James P. LeSage,Manfred M. Fischerffisamment rigide pour que beaucoup des invariants s’explicitent en termes combinatoires, et en même temps suffisamment riche pour permettre de tester et illustrer diverses conjectures et théories abstraites. Elle trouve application dans de nombreuses branches des mathématiques : géométrie algébriqu

Saline 发表于 2025-3-24 04:43:20

A Typology of Spatial Econometric Modelsal reference is Chapter I of ). If ξ is irrational, then, by letting . tend to infinity, this provides infinitely many rational numbers ../x. with |ξ - x./x...... By contrast, an irrational real number ξ is said to be . if there exists a constant c. > 0 suchthat |ξ - ..... for each .. or,equival

清唱剧 发表于 2025-3-24 10:09:55

http://reply.papertrans.cn/29/2806/280530/280530_16.png

eustachian-tube 发表于 2025-3-24 12:41:18

http://reply.papertrans.cn/29/2806/280530/280530_17.png

容易懂得 发表于 2025-3-24 18:30:39

http://reply.papertrans.cn/29/2806/280530/280530_18.png

Monotonous 发表于 2025-3-24 19:09:49

Helene Schuberth,Gert D. WehingerLet . denote an algebraically closed field of characteristic 0, and let A.,..., A., G.,..., ... ∈ K[.] and . be a sequence of polynomials defined by the . th order linear recurring relation . Furthermore, let P(.) ∈ K[.], deg . ≥ 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equation

GLOOM 发表于 2025-3-25 02:20:06

Manfred M. Fischer (Director),Peter NijkampConsidérons la série . qui converge pour tout complexe |q|. 1 et tout entier . 1. La notation ζ. est justifiée par le fait que cette fonction est un .-analogue de la fonction zêta de Riemann ζ . au sens suivant (voir , ou [.]),
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver