Original
发表于 2025-3-25 04:44:11
http://reply.papertrans.cn/16/1556/155558/155558_21.png
countenance
发表于 2025-3-25 10:47:57
Introduction,This book is the first comprehensive reference on the Kähler–Ricci flow. It provides an introduction to fully non-linear parabolic equations, to the Kähler–Ricci flow in general and to Perelman’s estimates in the Fano case, and also presents the connections with the Minimal Model program.
coltish
发表于 2025-3-25 12:06:56
An Introduction to Fully Nonlinear Parabolic Equations,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.
altruism
发表于 2025-3-25 18:14:26
http://reply.papertrans.cn/16/1556/155558/155558_24.png
innate
发表于 2025-3-25 22:33:48
http://reply.papertrans.cn/16/1556/155558/155558_25.png
indignant
发表于 2025-3-26 01:39:15
http://reply.papertrans.cn/16/1556/155558/155558_26.png
Introvert
发表于 2025-3-26 04:47:28
http://reply.papertrans.cn/16/1556/155558/155558_27.png
LAPSE
发表于 2025-3-26 09:59:02
Sebastien Boucksom,Philippe Eyssidieux,Vincent GueAn educational and up-to-date reference work on non-linear parabolic partial differential equations.The only book currently available on the Kähler-Ricci flow.The first book to present a complete proo
记成蚂蚁
发表于 2025-3-26 13:02:45
http://reply.papertrans.cn/16/1556/155558/155558_29.png
AGATE
发表于 2025-3-26 19:23:34
0075-8434on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of978-3-319-00818-9978-3-319-00819-6Series ISSN 0075-8434 Series E-ISSN 1617-9692