Original 发表于 2025-3-25 04:44:11
http://reply.papertrans.cn/16/1556/155558/155558_21.pngcountenance 发表于 2025-3-25 10:47:57
Introduction,This book is the first comprehensive reference on the Kähler–Ricci flow. It provides an introduction to fully non-linear parabolic equations, to the Kähler–Ricci flow in general and to Perelman’s estimates in the Fano case, and also presents the connections with the Minimal Model program.coltish 发表于 2025-3-25 12:06:56
An Introduction to Fully Nonlinear Parabolic Equations,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.altruism 发表于 2025-3-25 18:14:26
http://reply.papertrans.cn/16/1556/155558/155558_24.pnginnate 发表于 2025-3-25 22:33:48
http://reply.papertrans.cn/16/1556/155558/155558_25.pngindignant 发表于 2025-3-26 01:39:15
http://reply.papertrans.cn/16/1556/155558/155558_26.pngIntrovert 发表于 2025-3-26 04:47:28
http://reply.papertrans.cn/16/1556/155558/155558_27.pngLAPSE 发表于 2025-3-26 09:59:02
Sebastien Boucksom,Philippe Eyssidieux,Vincent GueAn educational and up-to-date reference work on non-linear parabolic partial differential equations.The only book currently available on the Kähler-Ricci flow.The first book to present a complete proo记成蚂蚁 发表于 2025-3-26 13:02:45
http://reply.papertrans.cn/16/1556/155558/155558_29.pngAGATE 发表于 2025-3-26 19:23:34
0075-8434on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of978-3-319-00818-9978-3-319-00819-6Series ISSN 0075-8434 Series E-ISSN 1617-9692