舰旗 发表于 2025-3-23 09:41:42
,Convergence of the Kähler–Ricci Flow on a Kähler–Einstein Fano Manifold, automorphism group, the normalized Kähler–Ricci flow converges smoothly to the unique Kähler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie他很灵活 发表于 2025-3-23 16:59:54
Einleitung und Problemstellung,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.使成波状 发表于 2025-3-23 20:03:27
http://reply.papertrans.cn/16/1556/155558/155558_13.png河潭 发表于 2025-3-23 22:41:05
http://reply.papertrans.cn/16/1556/155558/155558_14.png爱得痛了 发表于 2025-3-24 06:13:53
,Technologien für Digitalisierungslösungen,F in its first 20 years (1984–2003), especially an essentially self-contained exposition of Perelman’s uniform estimates on the scalar curvature, the diameter, and the Ricci potential function for the normalized Kähler–Ricci flow (NKRF), including the monotonicity of Perelman’s .-entropy and .-noncoGNAW 发表于 2025-3-24 09:04:11
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized Kähler–Ricci flow converges smoothly to the unique Kähler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie描述 发表于 2025-3-24 14:04:16
http://reply.papertrans.cn/16/1556/155558/155558_17.png动物 发表于 2025-3-24 15:18:23
http://reply.papertrans.cn/16/1556/155558/155558_18.pngcommonsense 发表于 2025-3-24 19:52:25
http://reply.papertrans.cn/16/1556/155558/155558_19.png有帮助 发表于 2025-3-25 00:35:35
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized Kähler–Ricci flow converges smoothly to the unique Kähler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.